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0.1 Organization of This Guide

This guide is split into two parts: the main text (with numbered sec-
tions) and the appendices (with lettered sections). For the introductory labs
(PHY121/122 and PHY133/134), you should know the material from the main
text.

Sections 2.3 and 2.4 are both optional, but recommended. Section 2.3 pro-
vides some motivation that may help the formulas to stick in your mind, but
you can do the calculations without this motivation. Section 2.4 works through
a few nice examples in very explicit detail, but some of you may not require this
level of detail.

The appendices are purely supplementary material. You may appreciate
them in later lab classes, or to further your understanding. They also may be
referenced in the lab manuals on an as-needed basis.

A final note, for your convenience: this PDF is hyperlinked. Click on a
section header in the table of contents to go to that section. Similarly, clicking
on a section or equation number in the text will take you to that section or
equation.
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1 Introduction

Error is one of the most important features of doing quantitative analysis.

Suppose you were doing a lab to check whether F = ma. Your measured
value of F is 0.99N, and your measured value of ma is 1.02N.

Is this good? Bad? Who knows? I mean, it’s close, so perhaps you can
say it agrees. If, on the other hand, you did a super-precise measurement, then
maybe you can actually say that F = ma is only approximately true.

Whether or not you confirm or deny Newton’s second law depends on the
precision of your experiment! So, in order to do our quantiative analysis properly
and come to a conclusion as to whether it is correct or not, we need to know
our errors.

1.1 Random vs. Systemic Error

There are two kinds of error that one deals with in the lab: random error
and systemic error.

Random error, per the name, are statistical effects that push your data every
which way from the “true” result, with no consistency to its effects. These will
result in your data being right on average, but any individual data point will be
off. This results in uncertainty. Random error won’t make you wrong (usually),
but will limit how much you can say. Data that doesn’t have much random
error is called precise.

Systemic errors are effects that come from aspects of your system that you
have not considered. These result in bias, as well as more complicated effects.
That is to say, systemic error will “push” your data in some consistent, reliable
way. It won’t (necessarily) increase the scatter of your data, so it won’t make
your data look “all over the place.” Rather, it takes the nice straight line your
data should make, and turns it into a line of a different slope (or another curve
altogether).

1.2 Quantifying Error: Absolute vs. Relative Error

There are two general ways to talk about error: absolute error and relative
error.

If you have a quantity X that you are measuring, the absolute error in X,
denoted as σX or σ(X), is simply the amount by which you are (or could be) off.
For instance, if you measure something to be 5.89m, then you might reasonably
say that your uncertainty is 1cm - that is to say, you could have been off by a
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centimeter.

You could also report this same uncertainty as a relative error, denoted
as σrel(X). This is when you compare the size of your error to the size of the
original quantity.1 The formula for relative error is:

σrelX =
σX
|X|

(1)

Thus, in the above example, your 1cm uncertainty on your 5.89m measure-
ment would turn into a relative error of 0.0016. In other words, the absolute
uncertainty on your measurement is 0.0016 times your original measurement.

You may be more familiar with the idea of relative error from the closely
related percent error, which is just 100 times larger.

Both relative and absolute errors have advantages and disadvantages as
methods of quantifying your error.

Absolute error is straightforward and easier to understand. They are also
necessary for direct comparison: if I ask you whether 5cm ± 1mm agrees with
a theoretical value of 4.8cm, that’s easy to tell; if I ask whether 5cm with a
relative uncertainty of 0.2 agrees with the same theoretical value, that’s not
nearly as obvious.

As such, when you state a quantity in your lab report, it should typically be
written X ± σX - that is to say, you talk about uncertainties with the absolute
error when reporting them. (This will also be the kind of error that these man-
uals will be referring to if they don’t explicitly say “relative error.”)

Relative errors give a sense of how “big” an error is in a general sense. That
is to say, if I tell you I have a 5% error, you have an immediate sense of how
much I’m off by; if I tell you I have a 1cm error, whether that’s big or small
depends on what I’m measuring.

In particular, relative errors can be compared across different sources of er-
rors: if one quantity has a relative uncertainty of 0.2 and another of 0.003, it’s
easy to see that the contribution of the second to your final amount of error
is negligible. If I tell you one has an error of 1cm and the other an error of
0.2s, you have no sense of which is the more relevant contribution. Therefore,
relative errors are the better things to look at if you want to compare errors of
different varieties.

1If your “original quantity” is zero (or, more generally, you are trying to measure something
which should be equal to zero), then you shouldn’t use relative error. As a more concise rule
of thumb: if your relative error is larger than 1, you should just use absolute error.
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Finally, a note on units: absolute errors will have the same units as the orig-
inal quantity,2 so a time measured in seconds will have an uncertainty measured
in seconds, etc.; therefore, they will only be unitless if the original quantity is
unitless. Relative errors are always unitless.3

1.3 Comparing Quantities with Uncertainties

Once you have an uncertainty, you can use it to compare quantities. In this
class, we will use two methods to do so.

The first method is used if only one quantity has uncertainty. This is typical
if one is comparing a calculated quantity from lab to a “theoretical value.”4 In
this case, one simply sees whether the quantity without uncertainty (the “the-
oretical value”) lies within the uncertainty range of the experimental value.

That is to say: if one is comparing A± σA to B, one simply sees whether or
not it is the case that A− σA < B < A+ σA.

The second method is used if one has two quantities with uncertainty. This
is usually for comparing different measurements to each other. In this case, one
sees whether the uncertainty ranges overlap at all.5 If these ranges overlap, then
we say the two values are consistent - both could be correct to within uncer-
tainty simultaneously.

More concisely: to compare A±σA to B±σB , we see whether we have both
that A+ σA > B − σB and that A− σA < B + σB .

2 Random Error

2.1 Basic Uncertainties

In order to get a sense of what our uncertainty will be in our final result, we
first should know what uncertainty comes from our measurements themselves.
How we do this depends on the nature of our uncertainty.

The first thing we have to do is to determine what the dominant source of
our uncertainty is. Is it the limits of our measuring apparatus? Is it the physical
arrangement of our device?

2Actually, you could change the modifier if you wanted to - for instance, 1.2cm ± 1mm -
but there’s rarely a reason to do so.

3This is a part of what makes them directly comparable.
4These theoretical values typically also have uncertainty, but such uncertainties are small

enough compared to the uncertainties in our experiments as to be neglected.
5For the sake of introductory labs, this is how we will do comparisons. In general, a slightly

better method is to see if the difference (with uncertainties propagated) is consistent with zero
(in the sense of a theoretical value). This accounts more accurately for uncorrelated errors.
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For instance: if you’re measuring the size of a string, the limit could gener-
ally be taken to be the markings on the ruler. However, if you were measuring
the distance between two houses down the street, there would likely be signif-
icant uncertainty from the size of the houses themselves, because they aren’t
“point houses.”

Your precision won’t be 1mm there, even if you measure with a super-precise
ruler, because the ruler isn’t the limit of your uncertainty. Even if you specified
an exact position (like “center of mass of the house”), you’re unlikely to be able
to know what that position is to within 1mm.

Then, we need to figure out how to determine this uncertainty. There are a
variety of simple ways to do this:

• For a digital device which directly outputs a reading (like a digital scale),
you can take the uncertainty to be given by the last digit the device
outputs. For instance, if it reads 4.18, then the uncertainty would be 0.01
(in whatever units the scale reads).

– Exception: if the reading from the device is significantly fluctuating,
you should take the fluctuations to be the typical uncertainty in the
reading, instead.

– Some devices have multiple settings which will change what that last
digit is. You should use the last digit from the setting you were using
when you made the measurement. (As such, you should also, as a
rule, use the setting with the smallest last digit that you can, because
this will minimize your uncertainty from that device.)6

• For something you are reading by eye, a typical rule is “half the smallest
division.” This applies unless you think there is a reason it should be
larger: say, you’re measuring a long distance, and are having a hard time
getting things to line up right, or the aforementioned house example.

• For pre-built devices (like a set of mass weights), there are usually a stan-
dard set of tolerances7 given by the manufacturer, which tells you how
much to expect they could be off by (at most). Such tolerances should be
specified in your lab manual or by your TA, where relevant.

However, some errors are not easily estimated. For instance, how precisely
can you hit the stop button on a stopwatch? (This will vary from person to
person, and you probably haven’t measured that for yourself!)

6A higher sensitivity might lead to you seeing fluctuations on a sensitive reading. This is
actually a good thing - you are not unnecessarily increasing your uncertainty by rounding.

7E.g., for our masses, see the NIST documentation defining standards for masses:
https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-50fecb383812d067b82bca54d84af943/pdf/

GOVPUB-C13-50fecb383812d067b82bca54d84af943.pdf
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In this case, there is a statistically rigorous8 way to determine the uncer-
tainty.

We first do the measurement of the same quantity, X, some number of
(statistically-independent) times N . Call these different measurements x1, x2,
. . . , xN . Then, we take the average of the results, X:

X =
x1 + x2 + . . .+ xN

N
(2)

This is then our best estimate of the relevant measurement. The uncertainty
of this average is:

σX =

√
(x1 −X)2 + (x2 −X)2 + . . .+ (xN −X)2

N(N − 1)
(3)

If you want the uncertainty of an individual measurement xi, you instead
use the formula:

σxi
=

√
(x1 −X)2 + (x2 −X)2 + . . .+ (xN −X)2

N − 1
(4)

This is handy if you’re trying to use your measurements to estimate the un-
certainty of some future measurement of the same type. For instance, you could
measure the uncertainty in hitting a stopwatch on one set of measurements, then
apply that uncertainty to another set of measurements where reaction time is a
factor.

Note, by the way, that the two quantities are closely related:9

σxi
=
√
NσX (5)

Note also how these quantities scale when taking many measurements: σxi

approaches a constant (the sum in the numerator has N terms and you divide
by approximately N), whereas σX is inversely proportional to

√
N . This is a

general statistical idea that is valuable to have in your intuition.

At the end of the day, though, most of these error estimates are just that:
estimates. Professional physicists (and scientists in general) spend a good deal of
time getting statistically-rigorous uncertainty measurements; for this lab, these
rough estimates will suffice. Use your best judgement.

8With appropriate mathematical assumptions, of course. Technically, we assume that
these measurements are independent and identically distributed - that is to say, that they
don’t influence each other and all function identically (with the same probability distribution
of measurements, in principle).

9Formally, you can prove this result - with appropriate assumptions on the individual
measurements - using just the addition propagation formula that we will derive in the next
section. If you are mathematically inclined, take a look!
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2.2 Uncertainty Propagation Formulas

Usually, you don’t directly measure your final result, though. Usually, you
measure some different quantities and calculate the final result. E.g.: if we want
to know the area of something, we’ll measure some lengths and apply geometry
formulas, not directly measure area.

Therefore, we are obligated to ask: once you have these basic measurement
uncertainties, how do you determine the uncertainty in your final results? Some-
how, you need to turn uncertainties in these quantities into uncertainties in your
final calculated results.

The first step to doing so is to identify how you calculated your quantity.
For instance, suppose you calculate the area of a rectangle, A = lw, from the
length and width of the rectangle. Then, of course, you calculated A as the
product of l and w.

The second step is to break this calculation into a sequence of elementary
steps. A = lw is already there: you’re just multiplying two things. However,
now let’s suppose you’re calculating the uncertainty in the area of a trapezoid,
A = 1

2 (b1 + b2)h, where you calculated the area of the trapezoid based on the
two bases and the height. Then, you can break that formula into performing
the following sequence of steps:

1. Add b1 to b2.

2. Multiply by h.

3. Muliply by 1
2 .

Each of those corresponds to a single computation. (Each such “simple step”
will have a separate formula we’ll give in a minute.)

The final step is to propagate error for each step. To do so, we’ll need some
special formulas that tell us how this is done; for instance, how to determine
the error in A+B based on the errors in A and B individually.

The following formulae indicate how to do this, given two experimental quan-
tities10 A and B and constants (i.e., numbers without error11 c and n:

σ(A+ c) = σA (6)

σ(cA) = |c|σA (7)

10Different experimental quantities, by the way - you can’t use, e.g., the addition formula
when A and B are the same!

11These include mathematical constants, like 2 or π, as well as physical quantities whose
errors are so small we can ignore them, such as a theoretical value of g.
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σ(A±B) =
√

(σA)2 + (σB)2 (8)

σ(A×B) = |AB|
√(σA

A

)2

+
(σB
B

)2

(9)

σ

(
A

B

)
=

∣∣∣∣AB
∣∣∣∣
√(σA

A

)2

+
(σB
B

)2

(10)

σ(An) = |n||A|n−1σA (11)

σ

(
1

A

)
=
σA
A2

(12)

Some of these can be more conveniently expressed in terms of relative errors:

σrel(cA) = σrelA (13)

σrel(A×B) = σrel

(
A

B

)
=
√

(σrelA)2 + (σrelB)2 (14)

σrel(A
n) = |n|σrelA (15)

σrel

(
1

A

)
= σrelA (16)

You may recognize that several of them have the same squaring, adding, and
square-rooting pattern of different quantities. If we take the quantity

√
x2 + y2,

that is called “adding x and y in quadrature.” Using that terminology, we can
express the above formulas in plain English:

• When you add a constant to a quantity with error, the absolute error
remains the same (6).

• When you multiply a quantity with error by a constant, the relative error
remains the same (13).

• When you add or subtract two quantities with error, you add the absolute
errors in quadrature to get the absolute error of the sum (8).

• When you multiply or divide quantities with error, you add the relative
errors in quadrature to get the relative error of the product or quotient
(14).

• When you take a power (without error) of a quantity with error, you
multiply the relative error by the absolute value of the exponent (15).
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• When you take one over a quantity with error, the relative error remains
the same (16).

If you’re adding and subtracting a bunch of things, or multiplying and di-
viding a bunch of things, the formulas (8) and (14) extend basically like you
would expect:

σ(A1 ±A2 ±A3 ± . . .) =
√
σ2
A1

+ σ2
A2

+ σ2
A3

+ . . . (17)

σrel

(
A1 ×A2 × . . .
B1 ×B2 × . . .

)
=
√

(σrelA1)2 + (σrelA2)2 + . . .+ (σrelB1)2 + . . . (18)

You may find the above formulas more convenient than breaking such things
into a whole bunch of individual multiplications.

You can even take formula (18) and extend it to combinations of products
and powers. Taking a canonical example rather than a fully general case for
simplicity, we can get formulas like:

σrel

(
cAnBm

Ck

)
=
√

(nσrel(A))2 + (mσrel(B))2 + (kσrel(C))2 (19)

When you don’t have any operations other than multiplication, division, and
(constant) powers, then equations like that are all you need.12

2.3 Where do those formulas come from?

Having formulas is nice, but it’s even nicer to understand those formulas.
While this won’t be a complete explanation, nor will it describe how to take
errors of more complicated formulas (see Appendix A for that), it should suffice
to give you some idea of why the formulas are the way that they are.

Let’s begin with adding two things. Let’s suppose we make two measure-
ments of the quantities A and B. Let’s say A and B are the actual values, but
we measure A+ δA and B+ δB - that is to say, δA and δB are the amounts we
are off by. (We don’t actually know these numbers, but they do exist.)

Now, when we take A+B, we can ask how far are we off there; i.e., what is
δ(A+B):

δ(A+B) = ((A+ δA) + (B + δB))− (A+B) = δA+ δB

12As a point of advice: if you learn how to make and use formulas like that, it will make
your life in this course much easier in the long run. Some later labs involve propagations
with many multiplications at once, and recognizing the logic behind equation (19) will let you
immediately know the answer rather than doing out a whole bunch of algebra.
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This is true for an individual measurement, but that’s not the same thing
as (8). Why?

Well, because sometimes, δA and δB will have opposite signs. Sometimes,
our errors will cancel. Just adding uncertainties doesn’t account for that possi-
bility.

To cut short a longer explanation,13 if you directly add (or subtract) errors
in two different quantities, like the formula above, you add the correspond-
ing uncertainties in quadrature. This accounts for the possibility of cancelling,
mathematically speaking.

Alright. If we have that, then we do get (8). Now, let’s look at the multi-
plication formula, (9).

Let’s do the same procedure: take A+δA and B+δB as our measurements,
and calculate δ(AB):

δ(AB) = (A+ δA)(B + δB)−AB = AδB +BδA+ δAδB

Now, we’re going to make a simplification: we’re going to assume our errors
are relatively “small.”14 If δA and δB are both small, then their product is
really small, and so we can ignore it. Therefore, approximately, we find:

δ(AB) ≈ AδB +BδA

Alright, now we’re going apply the same principle as above: we have two
errors in different quantities added together, so we’re going to add in quadrature
to get the uncertainty propagation formula. This gives us:

σ(AB) =
√

(AσB)2 + (BσA)2

Dividing the entire equation by AB and putting that inside the square-root
then gives us:

13We technically quantify uncertainty in the following way: we take the average value of

the square of our error, and square root that: σx =

√
(δx)2. If we square both sides of

δ(A+B) = δA+ δB, we get

(δ(A+B))2 = δA2 + δB2 + 2δA · δB

Now, take the average value of both sides, and you find

(σ(A+B))2 = σ2
A + σ2

B + 2δAδB

We now make an assumption, known as statistical independence: we assume δAδB = 0,
which gives us (8). Practically speaking, this assumption is true if A and B depend entirely
on separate measurements; to make things easy, in this lab, we’ll just always pretend that it’s
true. If it is not true, the quantities A and B are said to be correlated, and that makes error
analysis significantly harder.

14More mathematically precisely: we assume that the relative errors are much less than 1.
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σ(AB)

AB
=

√
A2(σB)2

(AB)2
+
B2(σA)2

(AB)2

This is the same as equation (14) for multiplication, from which you can get
(9) by multiplying by AB.

The rest follow from similar rules - if you really want to get where they
come from, you can work through some of them yourself. The multiplication
by a constant rule is straightforward. The power rule you can do for positive
integer powers using the binomial theorem (and remember that errors squared,
cubed, etc. are “very small” and you can ignore them).

For non-integer powers and for the division formula, you’ll need some calcu-
lus, unfortunately - see Appendix A.3 if you want to see how to get those.

2.4 Uncertainty Propagation Examples

Let’s now work through some examples so you can see how these things
work. These examples are all borrowed from high-school math, so there’ll be no
physics here; everything will be calculations you should recognize.

2.4.1 Simplest Example

Let me begin with the simplest possible kind of example: a propagation that
exactly matches one of our basic uncertainty formulas.

Let’s suppose you measure the length and width of a rectangle, and want to
measure the area. The formula for this, is of course, A = lw, so we’ve identified
how we calculated area: by multiplying length and width.

Therefore, since we are doing a product, we use the multiplication formula,
(9). Since everything is positive, we can ignore the absolute values.

We are multiplying l and w, so we replace every A in (9) by an l and every B
by a w. Note that the A in formula (9) is a “dummy variable” - it has nothing
to do with the area!

This gives us the formula:

σ(lw) = lw

√(σl
l

)2

+
(σw
w

)2

Since A = lw, the left-hand side of that equation is just σA, and so gives us
our uncertainty.

As an alternative approach, we could have used (14), which gives us:
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σrel(A) =
√
σrel(l)2 + σrel(w)2

This simplifies (after applying the definition of relative error) to the equiv-
alent formula:

σA = A

√(σl
l

)2

+
(σw
w

)2

2.4.2 Non-Trivial Example

Now, let’s see what happens when we have something that doesn’t match
one of our basic uncertainty formulas.

Let’s now suppose that we’ve measured the diameter d of a circle and want
to know its area. The formula for the area of a circle is A = πr2, but we didn’t
measure radius, we measured diameter.

There are two ways to deal with this. One is simply to modify our formula
to A = π

4 d
2, and propagate through that formula. That works, but we’ll take a

slightly different (but equivalent) approach for the sake of this example.

First, we compute the radius in terms of the diameter, as r = d/2. So we
just need to reference our formula for dividing by a constant... oops, we don’t
have one!

However, we have one for multiplying by a constant, so we just write our cal-
culation in a slightly different way: r = 1

2d. There: now we know which formula
to use, formula (7), because we’re multiplying our number with uncertainty (d)
by a number without uncertainty ( 1

2 ).

So, as we did previously, we take formula (7), and make the appropriate
substitutions: we replace c with 1

2 , and A with d. This gets us:

σ(
1

2
d) =

1

2
σd

Since r = 1
2d, we thus have σr = σd

2 . So we’ve done one step of our uncer-
tainty propagation.

Now, to return to our original problem: finding the area of the circle, now
using the formula A = πr2 to calculate in terms of r.

Again, we are left without any one of our formulas representing the opera-
tion we are doing. However, we are actually doing two things: squaring r, and
then multiplying that square by π.
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We do each step separately. We begin by taking the square of r. This is a
power, so we follow formula (11).15 We take A and replace it by r, and n and
replace it by 2, giving us:

σ(r2) = |2||r|2−1σr = 2rσr

Alright, now we want to multiply r2 by π. If we look at r2 as one thing, at
which point this looks like formula (7). If we replace c by π and A by r2 (again,
treating the expression r2 as one “thing” in our propagation), then formula (7)
turns into:

σ(πr2) = πσr2

Now we have two formulas: we can just plug the first into the second by
substitution! Doing so gives us our final formula for our uncertainty in area:

σA = σ(πr2) = πσr2 = π(2rσr)

So that gives us our formula for the uncertainty of a circle in terms of our
uncertainty in radius.16 We can use the propagation from diameter to radius as
an intermediary step, then propagate from radius to area.

It’s worth specifically pointing out that we showed off two ways to break a
calculation into steps in this example. (They’re really the same, but they look
a little different.)

In going from diameter to radius, we showed how to use an “intermediary
calculation” to help you get from one quantity to another. You could explicitly
write r and its uncertainty on your data table, do that calculation, then do the
second calculation. This is one method of doing a complicated propagation.

Alternatively, you can do what we did in going from radius to area: we had
two steps, so we did them out separately, then used algebra to combine them.
We then got a “final” formula that we could plug in. This is also a perfectly
acceptable way to do a complicated propagation.17

We could have used either of those methods for both steps, if we so chose; we
just mixed-and-matched as convenient, because r is an intermediary quantity
with a nice name (and physical intuition), whereas r2 is not. The data tables
are generally designed for this mix-and-match approach. If you like writing

15Note: even though this is also technically a multiplication, we can’t just use the multipli-
cation formula - it will give us a different result. The reasons behind this are a little subtle
(although if you work through the logic in section 2.3, you may have some intuition), but
basically, equation (9) only works if you’re multiplying different things. If you’re multiplying
the same thing, remember to always use the power formula!

16You may have noticed that this result is the uncertainty in r times the perimeter of the
circle. This is not a coincidence, but is also only tangentially related to error propagation.

17If you use this method, it is highly recommended that you do the algebra to simplify your
formula before you type it into any calculator or spreadsheet program, where possible. This
helps to avoid errors of incorrectly placed parentheses and the like.
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everything out explicitly with the first method, you can always do the extra cal-
culations off to the side somewhere18 and combine them into your final answer.

2.4.3 Hard Example

Now, let’s do one more example, for good measure. This is approximately
equivalent in complexity to our most complicated propagations, so serves as a
nice final case to look at.

Let’s suppose you want to calculate the uncertainty in the area of a trapezoid
for which we’ve measured the two bases and the height. Recall the formula for
the area of a trapezoid:

A =
1

2
(b1 + b2)h

We want to break this into steps as we did in the previous example. As
mentioned in section 2.2, you can split this calculation as follows:

1. Add b1 to b2.

2. Multiply by h.

3. Muliply by 1
2 .

Therefore, we calculate the uncertainty using formulas (8), (9), and (7), in
order, to get the following result:

σ(b1 + b2) =
√
σ2
b1

+ σ2
b2

σ((b1 + b2)h) = ((b1 + b2)h)

√(
σ(b1 + b2)

b1 + b2

)
+
(σh
h

)2

σA = σ

[(
1

2

)
((b1 + b2)h)

]
=

1

2
σ((b1 + b2)h)

Combining all of these together (and noting that when we combine all the
constants out front, they just calculate out to a factor of A), we get our final
error propagation formula:

σA = A

√√√√√
√
σ2
b1

+ σ2
b2

b1 + b2

2

+
(σh
h

)2

That explanation is deliberately a little briefer than previous sections - you
should work through the details for yourself, and try to replicate that result.
After all, in the lab, you’ll have to figure out the formulas for yourself!

18If you do this, it is advisable to label these extra calculations so your TA can more easily
see what you did and give you appropriate partial credit if necessary.
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3 Systemic Error

3.1 Isolating Systemic Errors

Systemic errors are a lot harder to deal with than random errors. This is for
two main reasons.

Firstly, systemic errors cannot be reduced by running more trials of the same
experiment. They will be present every time, with (roughly) the same effect,
and will not average out to zero.

For example, let’s suppose the lab was doing an experiment to measure
g = 9.8m/s2. Random errors would make one group measure 10m/s2, another
measure 9.7m/s2, etc., but on average the whole class would probably get some-
thing close to 9.8m/s2. For a systemic error, this isn’t true: it might make
everyone in the class measure g = 9.9m/s2, so that even when you average you
don’t get the right answer.

Systemic errors can be reduced by running multiple entirely different exper-
iments to find the same quantity, but that requires coming up with multiple
ways to test the same thing. Experimental physicists frequently have multiple
independent experiments testing the same thing for this exact reason.

Secondly, systemic errors can’t be measured by taking the same experiment
multiple times and observing how much your results move around, so there’s no
analogy for formulas (3) and (4). The only way to understand the size of your
systemic errors (from your experiment alone) is by understanding what causes
them.

Therefore, identifying systemic errors requires knowing the physics behind
your system, and understanding your experimental apparatus really well. You
have to see where some other physical effect could produce an impact on your
results, and what impact that would be.

3.2 Determining the Effects of Systemic Errors

There are two aspects of any systemic error that you would want to know:
what kind of effect it has, and how large this effect is.

Both can be determined by re-doing calculations after you include some es-
timates of any new physical parameters. That can usually be done if it needs
to be, but it’s often impractical.

Sometimes, however, we can make things easier by making quick approxi-
mations, so that’s what we’ll do here. This means we won’t actually calculate
the quantitative effects of our systemic errors. Instead, we’ll get a qualitative
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sense of what they’re doing and how important they are.

Many systemic errors can be simply stated as making you over- or under-
estimate some quantity. You can determine, based on that, whether your final
quantity would be too small or too large.

For instance, let’s suppose you have a mass that tells you it’s 1kg, but it’s
really dirty. Perhaps that dirt is adding extra weight to the mass. This means
that the total mass your experiment would be using would be bigger than 1kg,
so you underestimated the value of your mass.

Suppose your final goal was to measure the force exerted on this mass, based
on the acceleration it undergoes, using F = ma. Well, if you underestimate m,
then you would also underestimate F .

These kinds of reasoning - “I underestimated this, so I underestimated
that” (or, if something is in the denominator, “I underestimated this, so I
overestimated that”) - can tell you what kind of impact your systemic error
will have on your final result.19

The second thing you can do is estimate the size of these errors. This allows
you to determine whether or not such an error is important.

To a rough approximation, you can get a sense of their size with the follow-
ing rule of thumb: the relative error in your final quantity is usually about the
same as the relative error in your original quantity.

So, taking the above example of a dirty mass again, the relative error result-
ing from the dirt is the mass of the dirt divided by the mass of the original mass
(1kg). If you have an estimate of how much the dirt might weigh (say, 1g), you
can convert this into a relative error on the mass (in this case, 0.001).

You can then take this relative error as an order-of-magnitude estimate of
the relative error in F , so if F was 7.2N, then your absolute error in F would be
roughly .0072N. Assuming your random error in F is significantly higher than
this, you can neglect this error as insignificant.

19Sometimes, your systemic errors don’t just increase or decrease everything, or they do so
in a complicated way. For instance, let’s suppose you fit a line y = kx to a supposedly-linear
graph. However, there’s a systemic error that makes a corrected formula y = kx + ax2, for
some small number a. Will not including this systemic error make your measurement bigger
or smaller? There’s no easy way to tell, unfortunately - you would have to go through a more
detailed analysis. Systemic errors are generally hard!
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4 Other Things

4.1 Things that are NOT errors

There are many things which one would call “errors” in colloquial language,
but are not errors in a scientific sense. These include:

• Calculation errors: If you think your calculations have a problem, fix the
problem. If you can’t figure out how to fix the problem, but you know
you made one (and perhaps can even identify where it is), feel free to
mention it, but know that it’s a separate concern from the uncertainties
and systemic errors we’ve discussed here.

• Human error: again - if there’s a problem, fix it. If it’s too late to fix
when you realize that you made a significant mistake (say, you realize it
after you went home), that is worth mentioning, but it’s not a “source of
error” in the sense we’ve been discussing - it’s just a mistake.

• Random deviations from procedure that don’t affect results: Let’s say the
lab tells you to take a length of 0.3m for some piece of rope, in order to
have the experiment work well. If you have a 31cm rope, and then do
your calculations with L = 31cm, then that’s not an error, even if it’s
a deviation from procedure. If you do all calculations in a way that is
accurate to your numbers, then your results should still give you the right
result, even if you deviate from procedure, so this won’t result in errors!20

4.2 Significant Figures

In previous science classes, a great deal of attention may have been paid
attention to significant figures (how many decimal places you should work to)
and rules for manipulating them, trailing zeros, etc.

In general, significant figures serve two roles:

1. A stand-in for uncertainties. Significant figure rules are easy to follow -
easier than uncertainty propagation, certainly - and serve as a functional
replacement for them if actual uncertainties are not being calculated.

2. Aesthetic reasons. There’s no practical reason to go to the twentieth
decimal point if your error picks up at the second; those last decimal
places aren’t important, because your error is larger than them.

Since we’ll be using actual uncertainties, the first reason isn’t relevant.
Therefore, significant figures are, in this class, largely a matter of taste. In
the same sense as English grammar: you are allowed to break the rules if you

20Exception: some deviations will cause a systemic error to be less small, perhaps to the
point of being problematic. For instance, if you are doing an experiment involving an ideally
massless string, and you use way too much string, perhaps the approximation of a massless
string isn’t valid anymore.
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have a good reason for doing so. The rules serve as a guide to good communi-
cation, but should be ignored where they inhibit it.

As a general rule of thumb, work to three significant figures in your quan-
tities in this class, with a number on your uncertainty to match. You can go
further if you have a very-precisely measured quantity, or two if your error is
very large (say, bigger than 10%). Generally, though, three sig figs will be both
enough for rounding errors to not matter and few enough that it won’t be aes-
thetically abhorrent.

(As a matter of presentation in our lab: don’t feel obligated to round on your
data table. However, when you write your report, you should use a reasonable
number of digits in your discussion - don’t copy ten decimal places every time
you write your answer.)

4.3 Number Sense for Uncertainties

Finally, here are a few guidelines to help you identify when your uncertainty
propagation has problems:

• Generally, unless you’re doing addition, relative uncertainty shouldn’t
change too much. A good check is to calculate relative uncertainties for
every kind of basic measurement you have; if your final relative uncer-
tainty is much higher or lower than the largest of these, there’s probably
a mistake somewhere.

• When you make a plot, look at your error bars. Are they larger than the
range of your data? (Does your plot look almost like a bunch of vertical
lines, rather than dots with error bars?) If so, you probably have a mistake
somewhere (unless you have reason to think otherwise).

• If your uncertainty is larger than the value you measured, it is almost
certainly wrong. There are a few exceptions (e.g., position, which can be
measured as zero with an uncertainty), but generally, uncertainty greater
than value is bad.

• Finally: think about the uncertainty you calculated, physically.21 Does it
make sense? (If it’s bigger than you expect, is there a part of your experi-
ment that was obviously highly uncertain? If it’s smaller than you expect,
why - i.e., what “experimental tricks” enable you to make it small?)

If you identify a mistake, remember the saying “garbage in, garbage out” -
an early bad propagation will (usually) make later ones not make sense. Try
to find the earliest place where your results don’t make sense (using the above
tricks), since that’s where you are most likely to find your mistake.

21This really extends beyond uncertainties, of course - think about your measurements, your
calculated quantities, your final results, and all of their uncertainties.
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A Mathematical Details

A.1 What is an uncertainty really?

A proper definition of what an “uncertainty” really is was briefly explained
in footnote 13, but here’s an elaboration in a bit more detail.

Suppose we are taking a measurement of some quantity X. What, then,
really, is σX?

Well, this quantity X will have some average value of its measurement.22

Let’s call this value µ (not X, for reasons to be explained in the next section).

For any given measurement of X, we can then talk about X − µ for that
measurement. However, on average, this difference will be zero - X will be above
µ about as often as it will be below. So that doesn’t help.

It might seem reasonable to talk about the average distance of X from µ -
that is to say, the average value of |X−µ|. One can do this, but it’s very messy,
and doesn’t follow nice rules.

A better quantity to look at is the root mean square distance of X from µ
(with “root mean square” often abbreviated as rms). This is given by taking
the square, then the mean, then the root, yielding the formula:

σX = RMS Distance =

√
(X − µ)2 (20)

This turns out to have much nicer properties than our previous calculation,
and so we use this as our definition of σX .

Of course, your uncertainty estimates “by eye” won’t be this exact quantity,
but they’ll be vaguely similar, and so we’ll use the same formulas that this
follows. (We discuss this at more length in Appendix B.1.)

A.2 Why N − 1?

Now that (in the previous section) we defined what the uncertainty actually
is, we can see some of the motivation behind the formula for the uncertainty in
a single measurement, (4). In fact, this is almost the same as the calculation
we already have, except for that little −1 in the denominator. What gives?

Well, this is where the distinction between µ and X comes into play. The
quantity we’re measuring has some actual value, µ, that would be the average

22Hopefully, this will coincide with the “true” value of X (or at least be close enough). This
will only happen if our measurement procedure has minimal systemic error (or cancelling
systemic errors), and is therefore unbiased.

20



of infinitely many measurements. However, we only took finitely measurements,
and the average of our actual data is X, which will not necessarily equal µ. So
let’s go through this carefully.

Let’s suppose we’ve taken a bunch of measurements x1, x2, . . . , xn. This
data has an average of X, and a theoretical value of µ. Now, let’s calculate the
uncertainty σX based on the definition of σX given in equation (20). It’s easiest
to calculate from the square:

σ2
X = (X − µ)2 ≈

∑N
i=1(xi − µ)2

N

The approximation here means that, on average, that will be the variation
in our sample (since the left-hand side is based on the actual probability distri-
bution, and the right-hand side is based on our finite set of data). Corrections
to this approximation are not important for our purposes.23

We’ll use a trick of adding and subtracting X in each square now:

(σX)2 =

∑N
i=1((xi −X) + (X − µ))2

N

FOILing out that square gives:

σ2
X =

∑N
i=1

[
(xi −X)2 + (X − µ)2 + 2(xi −X)(X − µ)

]
N

=

∑N
i=1(xi −X)2 +

∑N
i=1(X − µ)2 +

∑N
i=1 2(xi −X)(X − µ)

N

=

N∑
i=1

(xi −X)2

N
+
N(X − µ)2

N
+

∑N
i=1 2(xi −X)(X − µ)

N

=
N∑
i=1

(xi −X)2

N
+ σ2

X
+
�����������
2(X − µ)

∑N
i=1(xi −X)

N

That last term is zero because the sum vanishes, by definition of X:

N∑
i=1

(xi −X) =

(
N∑
i=1

xi

)
−NX = NX −NX = 0

23For those of you who have taken a statistics class, applying this procedure again is what
gives you a t-score instead of a z-score. It tends to be more important at small sample sizes,
when the variation in the variance is higher (i.e., from set of trials to set of trials, the last
term of that sum varies more). However, we’re oversimplifying this anyway (since we’re not
even using z-scores; see Appendix B.2), so we’re not concerned about this subtlety here.
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Now: we have this nice formula, but don’t know either σX nor σX . However,
from the general sum formula (17) (which we don’t need this formula to derive),
we do know that equation (5) must hold.

Therefore, we can replace σ2
X

with (σX)2

N and finish off our calculation:

σ2
X =

1

N

N∑
i=1

(xi −X)2 +
σ2
X

N

Nσ2
X =

N∑
i=1

(xi −X)2 + σ2
X

Nσ2
X − σ2

X =

N∑
i=1

(xi −X)2

(N − 1)σ2
X =

N∑
i=1

(xi −X)2

σ2
X =

∑N
i=1(xi −X)2

N − 1

σX =

√∑N
i=1(xi −X)2

N − 1

And there you have it - equation (4), with the N − 1 factor and all. From
this, equation (3) is a result of (5), so now we have all of our basic formulas for
uncertainty.

TL;DR: The −1 is a result of the fact that the average of our data, X, is not
necessarily the same as the actual true value, µ, when we said the uncertainty
was our average distance from the true value. X will generically be closer to our
data than µ, and the slightly larger denominator compensates this difference.

A.3 A Fuller Explanation of Error Propagation Formulas

Using the definition of uncertainty from section A.1 and some basic notions
from calculus, we can get a better idea of where the error propagation formulas
come from, and figure out how to make our own.

Following the notation of section 2.3, we’ll denote by δX the difference in
our measurement from the true value of X, and similarly for δY when we need
it.
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A.3.1 1 Variable Error Formulas

Let’s begin with a function of one variable, f(X). The actual error of our
measurement of f(X) (resulting from an actual error in X of δX) is given by:

δ[f(X)] = f(X + δX)− f(X)

Well, that’s not very helpful in general. Fortunately, we have some calculus
tools on our side. Let’s make the assumption that δX is small, and Taylor-
expand it:

f(X + δX) ≈ f(X) + f ′(X)δX + . . .

Now, here’s the key approximation we’ll make: we’ll drop the . . . from the
above expression. We assume that the second-order errors are negligible, and
so use the first order errors. This is good enough for most purposes, although
if you were really careful you might want to do something more specific.

Therefore, we can approximate the earlier formula as:

δ[f(X)] ≈ [f(X) + f ′(X)δX]− f(X) = f ′(X)δX

Now, we just plug into the definition for σX , (20), and find the result:

σ[f(X)] =

√
(f ′(X)δX)2 =

√
(f ′(X))2(δX)2 = |f ′(X)|σX

Thus, our fully general one-variable error formula is simply:

σ[f(X)] = |f ′(X)|σX (21)

From there, using the fact that if f(X) = Xn, the derivative is f ′(X) =
nXn−1, you can directly get the power error propagation formula (11).

A list of error propagation formulas for a variety of functions (found by
applying the above formula) can be found in Table 1.

Calculation Error Formula

Xn |n||X|n−1σX

eX eXσX

ln(X) σX

|X|

sin(X) | cos(X)|σX *24

cos(X) | sin(X)|σX *24

sin−1(X) σX√
1−X2

*25

tan−1(X) σX

1+X2 *25

Table 1: A list of more exotic error functions.
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A.3.2 2+ Variable Error Formulas

Now, let’s consider functions of two variables, like addition and multiplica-
tion: f(X,Y ) = X+Y and so on. We’re going to need a bit of multivariable cal-
culus here, but conceptually, it’s the same. We begin with a Taylor-expansion:

f(X + δX, Y + δY ) ≈ f(X,Y ) +
∂f

∂X
δX +

∂f

∂Y
δY + . . .

Therefore, again dropping the higher-order terms, we similarly find the ex-
pression:

δ[f(X,Y )] ≈ ∂f

∂X
δX +

∂f

∂Y
δY

Again, we plug into our formula (20) and (after a bit of algebra) see what
we get:

σ[f(X,Y )] =

√(
∂f

∂X

)2

σ2
X +

(
∂f

∂Y

)2

σ2
Y + 2

(
∂f

∂X

)(
∂f

∂Y

)
δX · δY

Now, we assume that X and Y are uncorrelated, so δXδY = 0. Otherwise,
you need that number, too, to do your calculation properly; that number is
called the covariance of X and Y .26

Under the assumption that that’s zero, though, we get our formula in two
variables:

σ[f(X,Y )] =

√(
∂f

∂X

)2

(σX)2 +

(
∂f

∂Y

)2

(σY )2 (22)

If you know enough multivariable calculus to understand the partial deriva-
tives, you should now be able to derive the addition and multiplication rules
with that formula.

The derivation and result also extend straightforwardly to three or more
variables: you add more partial derivatives times matching errors in quadrature,
under the assumption that all errors are pairwise-uncorrelated.

A.3.3 Statistical Independence

It’s worth noting what happens when the statistical independence breaks
down.

24For trig functions, σX must be measured in radians.
25For inverse trig functions, σ(trig−1(X)) will be given in radians.
26The generalization of single-variable uncertainties to multi-variable uncertainties generally

entails a covariance matrix ; see Appendix B.3 for more details.
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For instance, consider if we were find the error in X
X+Y . Clearly, the nu-

merator and denominator are not independent - when the numerator increases,
the denominator increases too, so an error in X produces less error in this ratio
than it otherwise would, because the error in the numerator and denominator
will cancel.

In the context where the issue is just a complicated function of variables that
were originally statistically independent, there are two solutions to this. The
first is to try to get your equation into a form where the error can be evaluated
properly, and each variable only shows up once.

For instance, the above fraction is equal to 1
1+Y/X . There, if X and Y are

uncorrelated, we don’t have a computational issue. This is neat when you can
do it; unfortunately, it’s more of a trick than an easy-to-use procedure.

The other is to use the full calculus formulas. This is how to do this sort
of analysis properly, if you ever find yourself in such a situation, and is - if you
know calculus - often easier than trying to find a trick procedure.

(If the original quantities were statistically dependent, then you have to
quantify that statistical dependence, and things get more complicated - see the
discussion in Appendix B.3.)

A.3.4 Higher Order Effects

What if our Taylor series approximation breaks down? For instance, what
if f ′(X) = 0 (or is small enough that the second-order correction matters)?

A number of complicated things can happen, led by our error propagation
formulas being no longer approximately correct. That aside, though, more hap-
pens than just having different formulas: random errors have biasing effects.

Let’s take a simple example: suppose we want to measure X2 when the
true value, µ, is equal to 0. Now: any sort of X error is going to result in
a positive estimate for X2. This means that a really small random error in X
doesn’t make X2 go up and down by the same amount - it always makes it go up.

This makes our random error in X into a systemic one in X2. That’s quite
the messy issue!

Fortunately, it rarely comes up, but if you’re at a place where f ′(X) = 0 (in
any variable X), you’ll need to look very closely at your experiment to make
sure these systemic errors don’t matter. (Fortunately, the “errors-are-small”
assumption usually means these are still very small, and you can neglect them
altogether... but errors aren’t always small enough that you can do that!)
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Let’s take a more concrete example: a warped meter stick. The meter stick
can be warped up or down; let’s say the amount it is warped up or down is an
amount X.

It doesn’t matter if X is positive or negative; either way, the meter stick is
going to take a curved path between your two points rather than a straight one,
and so the measured distance will always be longer than the actual distance
(σ[f(x)] will always be positive). You are going to consistently overestimate the
actual distance, regardless of which direction it was warped.

B White Lies In These Notes

A number of things we have said in previous sections are not strictly true
(even if they approximate the truth to a certain degree). In this section, we will
rectify that by giving a more accurate presentation of that information.

The more nuanced methods presented here will not be used in our introduc-
tory physics labs (PHY121/122 and PHY133/134), but may be relevant to you
in a more advanced course.

B.1 Different Uncertainty Quantifications

The first lie we tell is that all of the methods of determining uncertainty in
section 2.1 are equivalent. This is, of course, not the case.

There are two reasonable ways to think about uncertainty. One is as an up-
per bound on the variation from the average. The other is the typical variation
from the average.

Most of the qualitative rules we provide in that section follow the upper-
bound rule. When we assume our dominant source of error is roundoff error,
we assume that we cannot be off by (significantly) more than the maximum
amount by which we round. Therefore, the amount we round can be taken as
an uncertainty.

This is also the sort of uncertainty we presume when we make our compar-
isons. When we ask whether the uncertainty ranges of A and B overlap (and
say that if they do they “agree” and if they don’t they “disagree”), we are at-
tempting to make the assertion: if they overlap, then there is a possibility that
both measurements are actually giving the same number; if they do not overlap,
then they cannot be giving the same number.

By contrast, the idea that uncertainty represents the “typical deviation”
from the true value underlies the derivations we perform in Appendix A, where
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we used the definition of uncertainty (20) that quantified that measurement.

In particular, that means that our statistically-derived uncertainties using
formulas (4) and (3) are measuring this typical deviation. So, technically speak-
ing, are all of our propagation formulas.

If we say we are using the second sort of measurement of uncertainty, then we
are overestimating many of our basic errors, and are being overly stringent on
our comparisons. If we say we are using the first sort of uncertainty, then our
statistically-estimated uncertainties are underestimated, and our comparisons
are overly strict (since we require27 the difference to be less than the “typical
distance”). In either case, we’re making a dishonest leap in our quantifications.

A reasonable compromise heuristic is the following: first, make the uncer-
tainty estimates as referred in section 2.1, except double formulas (4) and (3).
We then make propagations as before. Finally, we make comparisons to a con-
stant as before, and when we need to compare two numbers with uncertainty,
we take the difference and see if it is compatible with the constant 0.

In essence, if we take the statistical uncertainty formulas as measuring the
standard deviation of a normal distribution, then we are working with 95% con-
fidence intervals, and treating our measurement devices’ roundoff errors as 95%
confidence intervals as well.

The uncertainty formulas are the same for twice the uncertainty as the un-
certainty, so that still works, and our comparison technique ensures that at the
end of the calculation we are comparing with two-sigma confidence - that is
to say, we use what is often taken as standard outside of physics, the famous
“p < 0.05” confidence result.

B.2 Degrees of Confidence

A proper accounting of comparing with uncertainty is rarely all-or-nothing.
Typically, when experimental results disagree, there are varying degrees of dis-
agreement. While this section will not give a full account of these possibilities,
it may serve as an introduction to the world of “five-sigma results” versus “two-
sigma hints” (etc.) that you often hear in discussions of experimental physics.

When one takes measurements of a quantity, compared to the true value,
they come out with various distributions. To account for all these distributions
in a detailed way is a statistical nightmare - although, depending on the cir-
cumstances of the experiment, it may need to be done.

27When one quantity has uncertainty, anyway. When both have uncertainty, our “proper”
propagation formulas give us slightly more complicated results, since they add in quadrature.
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On a practical level, however, things tend to drastically simplify if you have
enough statistics. If you take an average of many measurement, then the mean
of those measurements always tends to be distributed according to a fixed dis-
tribution, known as a Gaussian. Formally (with all its technical caveats), this
is known as the Central Limit Theorem.

More specifically, define the normal distribution with mean µ and standard
deviation σ as:

f(x|µ, σ2) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(23)

Then, if we assume that a quantity is normally distributed with mean µ and
standard deviation σ, the probability for of getting a result for that quantity in
the range (a, b) (from a single measurement) is:

P (a, b) =

∫ b

a

f(x|µ, σ2)dx (24)

Then, the Central Limit Theorem states28 that, if you have a very large
number N of samples, and an initial distribution with mean µ and uncertainty
(in the sense defined in equation (20)) σ, the mean of all those measurements is
distributed in a way that is approximately normal, with mean µ and standard
deviation σ√

N
(and the approximation gets better as N gets larger).

So, at the end of the day, if we have a bunch of statistics, we can usually get
away with assuming our results are distributed in a Gaussian way, even if they
are not. If we make such an assumption, then we can much more easily make
quantitative comparisons, because now we have a probability distribution to use.

Now, let’s assume for simplicity that we’re comparing a result with uncer-
tainty (taken, again, in the sense of equation (20)) to a known expectation (if
both quantities have uncertainty, we can compare the difference to zero, as de-
scribed in the previous section). Then, we can ask how many multiples of that
uncertainty our result is from the expectation - often phrased as how many sig-
mas.

With our Gaussian distribution, we expect a result within one σ approxi-
mately 68% of the time, two σs 95%, and three σs 99.7%. For this reason, two
σs is often taken as a “strong hint” (but not more, since one in twenty experi-
ments will find that by accident29).

28There’s a bit more formalization still, but if you want to learn all the technical details,
take a probability theory class.

29This tends to be the standard for publication in some other fields (social sciences) by
default, which leads to the unfortunate practice of “p-hacking” - repeating many measurements
to find one that indicates a statistically significant result, even if it does not stand up to
replication and was one of these one-in-twenty chances. Some academic journals in those
fields have started instituting protections against this practice, since it is bad use of statistics
(whether intentional or not).
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The “golden standard” used in fields like particle physics for “discovery” of
new physics is typically five σ - that’s taken as a known result, unless relevant
systemic errors that were not noticed are later discovered. (The ways in which
labs account for systemic errors to avoid this problem vary from experiment to
experiment.)

Thus, one can have an experiment with a continuous range of results, based
on how many σ. Informally, we might say that we have three categories instead
of two: practical agreement (< 2σ), hints but not proof (> 2σ, < 5σ), and what
is practically proof (> 5σ), with a significant range of fuzziness in that middle
category.

B.3 Correlated Errors: Covariance Matrices

Several times, both in the main text and the appendix, we made note that
we were making a simplifying assumption that our different measurements were
all independent. We figured out how to work around that assumption if our
intermediary calculations were correlated using calculus if our initial measure-
ments were uncorrelated in section A.3, but here, we will figure out how to deal
with correlations between variables in a nice, systemic way.

Let’s suppose that we have our set of measurements ~X, which is a column
vector with N components. (Note: this is a vector in the mathematical sense,
not the physics sense; it does not lie in physical space, but in some abstract
mathematical space.) For instance, we might have measurements of mass m,
length L, maximum angle θ, and period T of a pendulum, in which case our
measurement vector could be:

X =


m

L

θ

T


Or, it could be rearrangement; the exact order of the components isn’t im-

portant (so long as you’re consistent about it). Now, as in sections 2.3 and A.3,
we let δX denote the difference in any particular measurement of X - that is to
say, the difference in any (hypothetical) set of measurements performed to get
X. We now define the covariance matrix as:

Σ = (δX)(δX)T (25)

We label entries of this matrix (taking the above X as an example) by, e.g.,
σmL. This is called the covariance between m and L (or whatever entries it has).

Then, it follows from our definition of uncertainty (20) that the diagonal
elements are the squares of uncertainty: σmm = σ2

m, etc. Furthermore, if your
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measurements are independent, this matrix is diagonal, and that is all that ap-
pears.

One can define another matrix, the correlation matrix, by dividing by ap-
propriate factors of the uncertainty, with entries:

corr(x, y) =
σxy
σxσy

(26)

In other words, we take the covariance matrix, take the diagonal elements
to define σm and so forth, then divide each row by the respective uncertainty
(i.e., divide the row corresponding to m by σm) and divide each column by the
respective uncertainty.

This makes a matrix with 1s on the diagonal and unitless numbers on the
off-diagonal. If all of your measurements are independent, the correlation ma-
trix ends up being the identity matrix. (The converse - that if you have the
identity matrix, your measurements are independent - is not necessarily true,
but is accurate to the lowest-order approximation that we make in our propa-
gation formulas.)

The correlation matrix is simpler and extract intuitive correlation informa-
tion from, but the covariance matrix is easier for most calculations (rather like
relative and absolute error).

Then, let’s suppose we have a function of multiple variables f(X), and want
to calculate its uncertainty. In terms of the derivative of f (in all variables)
at the measured value of X, ∇f (which we take as a column vector), we can
calculate the uncertainty as:

σ[f(x)] =
√

(∇f)TΣ(X)(∇f) (27)

If we have multiple functions of interest g(X), h(X), etc.; then we can ac-
tually calculate the covariance matrix using the same formula: assemble them
into a single row vector f(X) = [g(X) h(X) . . .], at which point ∇f is a ma-
trix (with which variable’s derivative you take changing in the columns and the
function you take changing in the rows). Then, the above equation still holds,
but gives the covariance matrix between g(X), h(X), etc.

If you take the simplest case, that your initial variables are uncorrelated,
then this gives the same results as in A.3.

C Data Fitting: Procedures and Uncertainties

In this section, we’ll explain some of the details behind how the plotting tool
works, and what a “line of best fit” means, quantitatively speaking. An under-
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standing of this will let you fit curves to a wider variety of circumstances than
the plotting tool(s) provided for the PHY121/122 and PHY133/134 courses.

C.1 Fitting a Line Without Error Bars

Let’s start with the simplest case: the data doesn’t have error bars to speak
of (or when we don’t know our errors very well, and just want something easy
and reasonable).

We say we want a “line of best fit,” which presumably means we want some-
thing optimized - we want it to be the “best.” But, in this context, what, ex-
actly, is “good” - that is to say, what makes one line a “better” fit than another?

What we ultimately want is some sort of measure of closeness to the data,
since an ideal line of best fit would pass as close to the data as possible. So let’s
try to measure “distance from the data” and see what we can do.

One näıve thing to try to measure total distance from a line to our points is
the following:

1. Take the line and data points as given.

2. For each data point, take the distance from the line to the data point as
the closest the line gets to the data point. (For a straight line, this will
always be done with a perpendicular projection.)

3. Take the total distance as the sum of individual distances.

This sounds reasonable, except that the computations (since we’re working with
distances in 2 (or higher!) dimensional space), which involve square roots, are
terrible. So, let’s simplify things a bit, and use the same trick that we do for
uncertainties themselves (as discussed in section A.1): we’ll work with the sum
of distances squared, which gives us what is (therefore) called a least squares fit.

Unfortunately, this still isn’t easy, because we have to find the distance of
closest approach, which is nontrivial even in the linear case (and it gets even
worse for nonlinear fitting). So we’ll simplify even more, and take just the ver-
tical distance between the point and the line. In addition to being simpler in
the linear case, this extends much more easily to a wide class of problems (as
will be discussed in C.2).

C.1.1 Solving the Linear Fit

Now: let’s suppose we have a bunch of measurements xi and corresponding
yi. Let’s arrange the yi into a column vector, ~y, with a number of entries equal
to the number of data points. Let’s do the same with the xi (into a vector ~x).
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Note that we want to minimize
∑
i(yi − (axi + b))2.

If we let ~1 be the column vector of all 1s (with a number of entries equal to
the number of data points), then this quantity can be rewritten:∑

i

(yi − (axi + b))2 = (~y − a~x− b~1)T (~y − a~x− b~1)

We can now minimize it in a and b by taking derivatives and setting them
equal to zero, which gives us that ~xT (~y − a~x− b~1) and ~1T (~y − a~x− b~1) vanish.
This is now a system of equations linear in a and b, and so it can be solved by
linear algebra.

This system of equations can be written in terms of the matrix X =
[
~x ~1

]
and the column vector c =

[
a

b

]
as:

XT~y = XTXc

If we suppose that XTX is invertible, then this gives us:

c = (XTX)−1XT y

This is an equation for a and b in terms of x and y.30

Since that is now simply a calculation of the coefficients in terms of an
explicit formula, one can, in principle, do an associated error propagation and
get an associated uncertainty on a and b. The full propagation is messy, but
if you neglect uncertainties in x, you can derive an uncertainty based on the
uncertainty in y:

δc = (XTX)−1XT δy

Σc = (XTX)−1XTΣyX(XTX)−1

Assuming we know the uncertainty in y (to avoid certain complications31)
and assuming that uncertainty is fixed over y (such that Σy = σ2

yI), we can get

30This can, in principle, be written more explicitly in terms of other quantities, but we don’t
do that here - the idea behind the calculation suffices for our purposes, since the Plotting Tool
can do the rest for us. If you want the final formulas, Google exists.

31In the absence of error bars, we make the assumption that Σy = σ2
yI - that is to say,

that all data points have the same uncertainty and there are no correlations in our data.
Furthermore, we make the assumption that the scatter in our data from the line is all a result
of vertical scatter in y, at which point we can use our data to get an estimate in σy , just as we
use the scatter in our data to get an estimate of uncertainty in any particular measurement
in equation (4).32 The details in this case get a bit more subtle, though, for the same reason
as discussed in section A.2: we are estimating uncertainty based on data’s difference from
an expectation that is also based on that data, and the scatter in our data from the average
based on our data will always be a bit less than the scatter in our data from the true value.

32Note that σy here is the y-scatter for any particular y for fixed x, not the overall y-scatter
in our data. Thus, we don’t näıvely apply equation (4) to get this value; we have to measure
the difference of each y from the expected value for that y, which is dependent on our fit.
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(after some algebra) the equation:

Σc =
1

N

σ2
y

1
N

∑
i(x

2
i )−

(
1
N

∑
i xi
)2
[

1 − 1
N

∑
i xi

− 1
N

∑
i xi

1
N

∑
i(x

2
i )

]
Note that the denominator is always positive, using the simplifying identity

(
∑
i x

2
i )− (

∑
i xi)

2 =
∑
i

(
xi −

(
1
N

∑
j xj

))2

. Also, assuming the x are drawn

from a fixed distribution, the matrix and the denominator of the fraction are
approximately constant for large N (the sums cancel the 1

N factors), so Σ ' 1
N ,

and in particular the uncertainties go like 1√
N

(as usual for information based

on an aggregate of N data points).

The nontrivial correlation matrix here deserves a bit of thought, but it’s in-
tuitively obvious: if all of our data takes place in positive x and we increase our
guessed intercept, we get an optimal fit by decreasing the slope to a correspond-
ing degree (to go back through the data on average), so we expect a negative
cross-correlation between intercept and slope if our data is generally positive,
as observed. (E.g., in the simplifying (although technically invalid) case of one
data point at a positive x, if we raise the intercept, we have to decrease the
slope to still pass through that data point and be the best fit.)

All of this analysis can be done without including the constant b term. The
only change that needs to be made is that you drop the column of 1s from the
x matrix and the vector c just turns into the constant a. This is the natural
result if you apply the methods of section C.2.

C.1.2 Linear Fits Without Error Bars In Context

In this course, that fit is exactly what the PHY121/122 plotting tool does:
it neglects the error bars entirely, and simply draws a line of best fit. The
PHY133/134 plotting tool does a more subtle fit that includes error bars, but
runs this kind of fit if no error bars are provided.

Most of your default fitting tools (which won’t require error bars to run a
fit) will do this kind of fit. In particular, Excel’s (Google Sheets’, etc.) linear
fitting utility (and associated built-in function LINEST, which also gives uncer-
tainties) do this sort of fit.

All of these tools (since they entirely neglect error bars) infer Σy from the
scatter in your data, and take into account the subtleties discussed in footnote
31.

C.2 Fitting General Linear Models

We’ll here extend the methods of section C.1.1 to a broader class of fitting
problems known as linear models. These have some number of inputs x and
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some outputs y.

We want to be fitting an equation which can be written in the form f(x) =∑
aifi(x), where the ai are unknown constants and the fi(x) are known func-

tions of the input(s).

For instance, we might be fitting an oscillation of known frequency with
something of the form A cos(ωt) +B sin(ωt), with A and B unknown constants
(and ω known, since it’s not a linear coefficient!), which is linear in the un-
knowns A and B (even though it is not in t). Similarly, for our standard linear
fit discussed earlier, we would take f1(x) = x and f2(x) = 1, with a1 = a and
a2 = b.

We will be using vertical least squares as our quantity to optimize for a best
fit, as before. We also assume, for simplicity, a single y output.

We suppose we have a set of x measurements xi and a corresponding set of
y measurements yi. Note that the indices here refer to different corresponding
sets of measurements; i.e., if we have multiple input variables x1 and x2, the xi
are sets of pairs of (x1, x2), not the individual elements of that pair.

We now write a matrix F (replacing what we called X in section C.1.1) such
that the ith column has the jth row be fi(xj). I.e., as you go down the matrix,
you change the x-measurement; as you go across the matrix, you change the
function fi taken. We also write down the coefficients ai as a column vector a.
For a given set of ai, the expected set of y is then Fa.

We then want to minimize the norm of y minus its expectation (squared),
which means we want to minimize (y − Fa)T (y − Fa). As before, we take a
derivative with respect to a (now done all-at-once as a vector), giving us the
criterion FT (y − Fa) = 0.

Applying linear algebra techniques gives us the expansion:

a = (FTF )−1FT y (28)

We can, as before, also calculate the uncertainty:

Σa = (FTF )−1FTΣyF (FTF )−1

As before, this is assuming no x-uncertainties (see also the discussion of es-
timating Σy using the scatter in y in section C.1.1).

If y has multiple data points (and we want to minimize the overall norm),
then F becomes more than a matrix (a tensor). If we have ya as our different
outputs, one can make a corresponding F a (a matrix for each a), with our linear

34



model being ya =
∑
i aif

a
i (x) (a different function for each a). At this point,

equation (30) turns into:

a =
∑
b,c

(F b,TF b)−1F c,T yc (29)

(The uncertainty formula can, of course, be similarly extended, but we don’t
reproduce it here.)

C.2.1 Linearizing Nonlinear Models

As we just showed, all models which can be written in the “linear” form of
f(x) =

∑
aifi(x) (for known fi) are fairly easy to write down a least-squares

optimization for explicitly. This covers a wide class of models, including all
polynomial models.

However, some models of interest are nonlinear. For instance, suppose we
know y = Ae−Γt - we might reasonably want to fit an exponential function.
Unfortunately, there’s no way to fit these kinds of models in an analytic, easy
way in general.

For many of these models, there is a solution: you convert it to a form where
it is a linear model. For instance, in the above case, you can take a logarithm,
and show that ln(y) = ln(A) − Γt. Since ln(A) is just another constant, we
now have a fit of the form ỹ = Ã − Γt, and this is a linear model in the new
coefficients. So we can run a fit of this quite easily!

It’s worth noting that this isn’t quite the same fit as we would have run to
our original distribution, because we’re minimizing the distance in ln(y) instead
of in y. However, the hope is that we will still get a reasonable fit out of this
method, which should hold so long as the transformed variable’s probability
distribution looks roughly like the original variable’s. This is always true if the
errors are “small” (in the sense we exploit in error propagation), such that we
can transform the errors from y to ln(y) in a straightforward way, but need not
be the case in general.

Here are a few different versions of linearizations we can use:

• An exponential without constant, y = AeΓt, can be linearized by taking a
logarithm of both sides.33

• A sine wave with known frequency ω but unknown phase φ can be calcu-
lated using trigonometric identities: if we have the model y = A sin(ωt+φ),
we can replace it with y = B cos(ωt) + C sin(ωt)

33This is not the case with a nonlinear fit, y = AeΓt + B, unfortunately - although if you
have a lot of long-time data, you can typically estimate B well enough to calculate it based
on that data alone, and work with y−B on your remaining data, from which you calculate Γ.
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• A power law without constant, y = axγ , can be linearized with a logarithm:
ln(y) = ln(a) + γ ln(x) (noting that A = ln(a) is itself is a free parameter
in which one can work linearly). This is sometimes phrased as that γ is
the linear slope of a log-log plot.34

Unfortunately, not all models can be easily linearized, so depending on what
you need, you may need to use some clever tricks - or just bite the bullet and
numerically fit a nonlinear model.

C.3 Fitting With Vertical Uncertainties

Now, using those same methods, we can add in uncertainties in y into our
fit fairly easily. The key thing to understand is that we are no longer optimizing
least-squares. Instead, we will optimize something similar, but we will normal-
ize the differences by the respective differences.

First, assume for simplicity that the covariance Σy is diagonal, so that
there are no correlations, but data points can have different uncertainties σi.
Now, instead of wanting to optimize

∑
i(yi − f(xi))

2, we instead optimize∑
i

(
yi−f(xi)

σi

)2

. If we add in correlations and again write yi−f(xi) as a column

vector δy, we want to minimize δyTΣ−1
y δy. Expanding this as before slightly

extends our formula to:

a = (FTΣ−1
y F )−1FTΣ−1

y y (30)

Similarly, the uncertainty equation:

Σa = (FTΣ−1
y F )−1FTΣ−1

y F (FTΣ−1
y F )−1

Messy, but ultimately just a bunch of linear algebra (and thus pretty easy
to do on a computer, if you really want to!)

C.4 Horizontal Error Bars

A reasonable way to account for horizontal error bars that preserves the
computational simplicity of a vertical least-squares fit is the following:

• Figure out a probability distribution you want to use in the horizontal
direction (say, a Gaussian). That is to say, if your measurement has a
value of x0 and an uncertainty of σx, figure out the probability that the
actual value is some other x, and write P (x|x0, σx) (the probability of
the actual value being x given that the measured value is x0 with an
uncertainty of σx).

34This is one reason why power laws are often taken as phenomenological fits to quantities
which operate on a wide range of scales, such as astronomical relations: they are “linear” in
the space of exponents.

36



• Treat your measurement of x0 as actually an infinite number of data
points: one for every possible x, with weight P (x| . . .). This means you
now have a smooth number of data points, but they all only count as a
fraction of a point. (This is the more analytical way to do it; if you want
a computationally viable way, discretize this probability distribution - it
won’t make too much of a difference.)

• Linearly fit, as before, with this data-point distribution (finite or infinite).

The math is conceptually fancy (especially if you don’t discretize), but in prin-
ciple is still entirely doable with linear algebra, and therefore, as before, is easy
to write into a program.

C.5 Nonlinear Fitting of Models

One might wonder what happens when one lifts the assumption of vertical
least squares and goes back to perpendicular least squares, or when one wants
to fit nonlinear (and non-linearizable35) models.

Unfortunately, this isn’t generally possible to do exactly; therefore, we leave
it to numerical optimization routines. If you need to do something fancy like
this, find a package that will do it for you, or code it - don’t do it by hand.

One optimization routine you might try, if you want to run this in Excel or
Google Sheets, is the “Solver” tool. It’s more than is available in either program
by default, but with a little googling, you should be able to figure out how it
works.

Python also has a few algorithms to do this, in scipy. scipy.optimize.curve fit
runs a vertical least squares on a general model, which can be linear or nonlin-
ear. scipy.odr runs an orthogonal weighted least-squares (“orthogonal distance
regression”).

One feature all of these routines have in common is that they optimize
based on an initial “guess.” Hence, you have to be able to come up with some
reasonable conjecture of the parameters to begin with, and then these algorithms
find the best fit that is “close” to what you guessed. (This is a feature of
numerical optimization more than the particulars of curve fitting.)

C.6 PHY133/134 Plotting Tool

Now that we’ve explained all these fitting algorithms, let’s discuss what our
PHY133/134 tool does.

35See section C.2.1 for what we mean by “linearizable”
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If no error bars are input, it fits with a least-squares regression, as discussed
in section C.1.2.

If only x or y error bars are input, it runs a weighted least-squares.36 The
weights are based on the input standard deviations.

Finally, if both x and y error bars are input, we use scipy.odr to compute
the weighted orthogonal distance regression.

As mentioned in section C.5, in all cases of nonlinear fits, a “guess” is first
required; you may wonder where the tool gets such a guess from. The tool
determines the “guess” parameters by running a least-squares regression first,
then using those as a starting point for the nonlinear optimization.

If you want to explore further (or replicate the procedure), we recommend
playing around with the aforementioned libraries in scipy. Have fun!

36We technically use scipy.odr to do so rather than scipy.optimize.curve fit, but we adjust
the weights so that effectively only one direction is considered.
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