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1. Systematic and random errors. 
No measurement made is ever exact. The accuracy (correctness) and precision (number of significant 

figures) of a measurement are always limited by the degree of refinement of the apparatus used, by the 

skill of the observer, and by the basic physics in the experiment. In doing experiments we are trying to 

establish the best values for certain quantities, or trying to validate a theory. We must also give a range 

of possible true values based on our limited number of measurements.  

Why should repeated measurements of a single quantity give different values? Mistakes on the 

part of the experimenter are possible, but we do not include these in our discussion. A careful 

researcher should not make mistakes! (Or at least she or he should recognize them and correct 

the mistakes.)  

We use the synonymous terms uncertainty, error, or deviation to represent the variation in 

measured data. Two types of errors are possible. Systematic error is the result of a mis-

calibrated device, or a measuring technique which always makes the measured value larger (or 

smaller) than the "true" value. An example would be using a steel ruler at liquid nitrogen 

temperature to measure the length of a rod. The ruler will contract at low temperatures and 

therefore overestimate the true length. Careful design of an experiment will allow us to eliminate 

or to correct for systematic errors.  

Even when systematic errors are eliminated there will remain a second type of variation in 

measured values of a single quantity. These remaining deviations will be classed as random 

errors, and can be dealt with in a statistical manner. This document does not teach statistics in 

any formal sense, but it should help you to develop a working methodology for treating errors.  

2. Determining random errors. 
How can we estimate the uncertainty of a measured quantity? Several approaches can be used, 

depending on the application.  

(a) Instrument Limit of Error (ILE) and Least Count 

The least count is the smallest division that is marked on the instrument. Thus a meter stick will 

have a least count of 1.0 mm, a digital stop watch might have a least count of 0.01 sec.  

The instrument limit of error, ILE for short, is the precision to which a measuring 

device can be read, and is always equal to or smaller than the least count. Very good 

measuring tools are calibrated against standards maintained by the National Institute of 

Standards and Technology.  



The Instrument Limit of Error is generally taken to be the least count or some fraction 

(1/2, 1/5, 1/10) of the least count). You may wonder which to choose, the least count or 

half the least count, or something else. No hard and fast rules are possible, instead you 

must be guided by common sense. If the space between the scale divisions is large, you 

may be comfortable in estimating to 1/5 or 1/10 of the least count. If the scale divisions 

are closer together, you may only be able to estimate to the nearest 1/2 of the least count, 

and if the scale divisions are very close you may only be able to estimate to the least 

count.  

For some devices the ILE is given as a tolerance or a percentage. Resistors may be 

specified as having a tolerance of 5%, meaning that the ILE is 5% of the resistor's value.  

Problem:  For each of the following scales (all in centimeters) determine the least 

count, the ILE, and read the length of the gray rod. 

 

Answer  

   

 
Least Count (cm) ILE (cm) Length (cm) 

(a) 1 0.2 9.6 

(b) 0.5 0.1 8.5 

(c) 0.2 0.05 11.90 

 

(b) Estimated Uncertainty 

Often other uncertainties are larger than the ILE. We may try to balance a simple beam balance 

with masses that have an ILE of 0.01 grams, but find that we can vary the mass on one pan by as 

much as 3 grams without seeing a change in the indicator. We would use half of this as the 

estimated uncertainty, thus getting uncertainty of ±1.5 grams.  



Another good example is determining the focal length of a lens by measuring the distance 

from the lens to the screen. The ILE may be 0.1 cm, however the depth of field may be 

such that the image remains in focus while we move the screen by 1.6 cm. In this case the 

estimated uncertainty would be half the range or ±0.8 cm.  

Problem:  I measure your height while you are standing by using a tape measure 

with ILE of 0.5 mm.  Estimate the uncertainty.  Include the effects of not knowing 

whether you are "standing straight" or slouching.    

Solution.   

There are many possible correct answers to this. However the answer  

Δh = 0.5 mm is certainly wrong Here are some of the problems in 

measuring.  

1. As you stand, your height keeps changing. You breath in and out, 

shift from one leg to another, stand straight or slouch, etc. I bet this 

would make your height uncertain to at least 1.0 cm.  

2. Even if you do stand straight, and don't breath, I will have difficulty 

measuring your height. The top of your head will be some horizontal 

distance from the tape measure, making it hard to measure your 

height. I could put a book on your head, but then I need to determine 

if the book is level.  

I would put an uncertainty of 1 cm for a measurement of your height.  

 

 

(c) Average Deviation: Estimated Uncertainty by Repeated Measurements 

The statistical method for finding a value with its uncertainty is to repeat the measurement 

several times, find the average, and find either the average deviation or the standard 

deviation.  

Suppose we repeat a measurement several times and record the different values. We can 

then find the average value, here denoted by a symbol between angle brackets, <t>, and 

use it as our best estimate of the reading. How can we determine the uncertainty? Let us 

use the following data as an example. Column 1 shows a time in seconds.  

Table 1. Values showing the determination of average, 

average deviation, and standard deviation in a measurement 

of time. Notice that to get a non-zero average deviation we 



must take the absolute value of the deviation.  

Time, t, 

sec.   

(t - <t>), 

sec  

|t - <t>|, 

sec  
 

7.4   -0.2  0.2  0.04 

8.1  0.5  0.5  0.25 

7.9  0.3  0.3  0.09 

7.0   -0.6  0.6  0.36 

<t> = 7.6 
<t-<t>>= 

0.0 

<|t-<t>|>= 

0.4 = 0.247  

Std. dev = 0.50 

A simple average of the times is the sum of all values (7.4+8.1+7.9+7.0) divided by the number 

of readings (4), which is 7.6 sec. We will use angular brackets around a symbol to indicate 

average; an alternate notation uses a bar is placed over the symbol.  

Column 2 of Table 1 shows the deviation of each time from the average, (t-<t>). A 

simple average of these is zero, and does not give any new information.  

To get a non-zero estimate of deviation we take the average of the absolute values of the 

deviations, as shown in Column 3 of Table 1. We will call this the average deviation, t.  

Column 4 has the squares of the deviations from Column 2, making the answers all 

positive.  The sum of the squares is divided by 3, (one less than the number of readings), 

and the square root is taken to produce the sample standard deviation.  An explanation 

of why we divide by (N-1) rather than N is found in any statistics text.  The sample 

standard deviation is slightly different than the average deviation, but either one gives a 

measure of the variation in the data.  

If you use a spreadsheet such as Excel there are built-in functions that help you to find 

these quantities.  These are the Excel functions.  

=SUM(A2:A5) Find the sum of values in the range of cells A2 to A5. 

=COUNT(A2:A5) 
Count the number of numbers in the range of cells A2 

to A5. 



=AVERAGE(A2:A5) 
Find the average of the numbers in the range of cells 

A2 to A5. 

=AVEDEV(A2:A5) 
Find the average deviation of the numbers in the 

range of cells A2 to A5. 

=STDEV(A2:A5) 
Find the sample standard deviation of the numbers in 

the range of cells A2 to A5.  

For a second example, consider a measurement of length shown in Table 2. The average 

and average deviation are shown at the bottom of the table.  

Table 2. Example of finding an average length and an average deviation in length. 

The values in the table have an excess of significant figures. Results should be 

rounded and can be reported as (15.5 ± 0.1) m or (15.47 ± 0.13) m. If you use 

standard deviation the length is (15.5 ± 0.2) m or (15.47 ± 0.18) m. 

Length, x, m   |x- <x>|, m  
 

15.4   0.06667  0.004445 

15.2   0.26667   0.071112 

15.6  0.13333  0.017777 

15.7  0.23333  0.054443 

15.5  0.03333  0.001111 

15.4  0.06667  0.004445 

Average 15.46667 m  ±0.133333 m  St. dev.  ±0.17512 

  

We round the uncertainty to one or two significant figures (more on rounding in Section 7), and 

round the average to the same number of digits relative to the decimal point. Thus the average 

length with average deviation is either (15.47 ± 0.13) m or (15.5 ± 0.1) m.  If we use standard 

deviation we report the average length as (15.47±0.18) m or (15.5±0.2) m.  



Follow your instructor's instructions on whether to use average or standard deviation in your 

reports.  

Problem  Find the average, and average deviation for the following data on 

the length of a pen, L.  We have 5 measurements,  

(12.2, 12.5, 11.9,12.3, 12.2) cm.   

Solution  

We have 5 measurements,  

(12.2, 12.5, 11.9,12.3, 12.2) cm.  

Length (cm) | 
 

12.2 0.02 0.0004 

12.5 0.28 0.0784 

11.9 0.32 0.1024 

12.3 0.08 0.0064 

12.2 0.02 0.0004 

Sum     61.1 Sum   0.72 Sum   0.1880 

Average   61.1/5 

= 12.22 
Average   0.14 

 

To get the average sum the values and divide by the number of 

measurements.  

To get the average deviation, 

1. Find the deviations, the absolute values of the quantity (value minus the 
average), |L - Lave|  

2. Sum the absolute deviations,  
3. Get the average absolute deviation by dividing by the number of 

measurements  

To get the standard deviation  

1. Find the deviations and square them  

http://www.rit.edu/cos/uphysics/uncertainties/avedevexample.html#Example 1


2. Sum the squares  
3. Divide by (N-1), the number of measurements minus 1 (here it is 4)  
4. Take the square root.  

The pen has a length of (12.22 +/- 0.14) cm or (12.2 +/- 0.1) cm [using 

average deviations] or  

(12.22 +/- 0.22) cm or (12.2 +/- 0.2) cm [using standard deviations]. 

 

  

Problem:  Find the average and the average deviation of the following 

measurements of a mass.  

(4.32, 4.35, 4.31, 4.36, 4.37, 4.34) grams.    

 Solution  

Mass (grams) 
 

 

4.32 0.0217 0.000471 

4.35 0.0083 0.000069 

4.31 0.0317 0.001005 

4.36 0.0183 0.000335 

4.37 0.0283 0.000801 

4.34 0.0017 0.000003 

Sum    26.05 0.1100 0.002684 

Average     4.3417 Average   0.022 
 

The same rules as Example 1 are applied. This time there are N = 6 

measurements, so for the standard deviation we divide by (N-1) = 5.  

The mass is (4.342 +/- 0.022) g or (4.34 +/- 0.02) g [using average 

http://www.rit.edu/cos/uphysics/uncertainties/avedevexample.html#example 2


deviations] or  

(4.342 +/- 0.023) g or (4.34 +/- 0.02) g [using standard deviations]. 

 

   

(d) Conflicts in the above 

In some cases we will get an ILE, an estimated uncertainty, and an average deviation and we will 

find different values for each of these. We will be pessimistic and take the largest of the three 

values as our uncertainty. [When you take a statistics course you should learn a more correct 

approach involving adding the variances.] For example we might measure a mass required to 

produce standing waves in a string with an ILE of 0.01 grams and an estimated uncertainty of 2 

grams. We use 2 grams as our uncertainty.  

The proper way to write the answer is  

1. Choose the largest of (i) ILE, (ii) estimated uncertainty, and (iii) average or standard 
deviation.  

2. Round off the uncertainty to 1 or 2 significant figures.  
3. Round off the answer so it has the same number of digits before or after the decimal 

point as the answer.  
4. Put the answer and its uncertainty in parentheses, then put the power of 10 and unit 

outside the parentheses.  

Problem:  I make several measurements on the mass of an object.  The balance has an ILE of 

0.02 grams.  The average mass is 12.14286 grams, the average deviation is 0.07313 

grams.  What is the correct way to write the mass of the object including its 

uncertainty?  What is the mistake in each incorrect one?    

1. 12.14286 g  
2. (12.14 ± 0.02) g  
3. 12.14286 g ± 0.07313  
4. 12.143 ± 0.073 g  
5. (12.143 ± 0.073) g  
6. (12.14 ± 0.07)  
7. (12.1 ± 0.1) g  
8. 12.14 g ± 0.07 g  

9. (12.14 ± 0.07) g  

Answer 

1. 12.14286 g Way wrong! You need the uncertainty reported with the 



answer. Also the answer has not been properly rounded off. 

2. (12.14 ± 

0.02) g 

Way wrong! You could not read my writing perhaps. The 

uncertainty is 0.07 grams. Otherwise the format of the answer is 

fine. 

3. 12.14286 g ± 

0.07313 

Way wrong! You need to round off the uncertainty and the 

answer. Also the answer should be presented within 

parentheses. 

4. 12.143 ± 

0.073 g 

Almost there. Put parentheses around the numbers and it 

would be OK. Rounding off one more place is better. 

5. (12.143 ± 

0.073) g 

This is fine. Slightly better would be to round off one more 

place. 

6. (12.14 ± 

0.07) 
Almost there, but what pray tell are the units? 

7. (12.1 ± 0.1) 

g 

Wrong. You went overboard in rounding. Stop when the 

uncertainty is 0.07, one significant figure. 

8. 12.14 g ± 

0.07 g 

Almost right. The answer and uncertainty should be in 

parentheses with unit outside. 

9. (12.14 ± 

0.07) g 
Correct! 

 

 

  

Problem:  I measure a length with a meter stick with a least count of 1 mm. I 

measure the length 5 times with results (in mm) of 123, 123, 123, 123, 123. What is 

the average length and the uncertainty in length?  

 Answer  

Length, L (mm) 
 

 

123 0.0 0.0 

123 0.0 0.0 

123 0.0 0.0 



123 0.0 0.0 

123 0.0 0.0 

Sum 616 Sum    0.0 Sum    0.0 

Average    123 Average   0.0 St. Dev.   0.0 

Here the average deviation and the standard deviation are smaller than the ILE of 

0.5 mm. Hence I use 0.5 mm as the unceratinty.  

The object has a length of (123.0 +/- 0.5) mm. 

 

 

(e) Why make many measurements? Standard Error in the Mean. 

We know that by making several measurements (4 or 5) we should be more likely to get a good 

average value for what we are measuring.  Is there any point to measuring a quantity more often 

than this? When you take a statistics course you will learn that the standard error in the mean 

is affected by the number of measurements made.  

The standard error in the mean in the simplest case is defined as the standard deviation divided 

by the square root of the number of measurements.  

The following example illustrates this in its simplest form. I am measuring the length of an 

object. Notice that the average and standard deviation do not change much as the number of 

measurements change, but that the standard error does dramatically decrease as N increases.  

   

Finding Standard Error in the Mean 

Number of 

Measurements, N 
Average 

Standard 

Deviation 

Standard 

Error 

5 
15.52 

cm 
1.33 cm 0.59 cm 

25 
15.46 

cm 
1.28 cm 0.26 cm 



625 
15.49 

cm 
1.31 cm 0.05 cm 

10000 
15.49 

cm 
1.31 cm 0.013 cm 

  

For this introductory course we will not worry about the standard error, but only use the standard 

deviation, or estimates of the uncertainty.  

 

3. What is the range of possible values? 

When you see a number reported as (7.6 ± 0.4) sec your first thought might be that all the 

readings lie between 7.2 sec (=7.6-0.4) and 8.0 sec (=7.6+0.4). A quick look at the data in the 

Table 1 shows that this is not the case: only 2 of the 4 readings are in this range. Statistically we 

expect 68% of the values to lie in the range of <x> ± x, but that 95% lie within <x> ± 2 x. In 

the first example all the data lie between 6.8 (= 7.6 - 2*0.4) and 8.4 (= 7.6 + 2*0.4) sec. In the 

second example, 5 of the 6 values lie within two deviations of the average. As a rule of thumb 

for this course we usually expect the actual value of a measurement to lie within two 

deviations of the mean. If you take a statistics course you will talk about confidence levels.  

How do we use the uncertainty? Suppose you measure the density of calcite as (2.65 ± 0.04) 

. The textbook value is 2.71 . Do the two values agree? Since the text value 

is within the range of two deviations from the average value you measure you claim that your 

value agrees with the text. If you had measured the density to be (2.65 ± 0.01)  you 

would be forced to admit your value disagrees with the text value.  

The drawing below shows a Normal Distribution (also called a Gaussian).  The vertical axis 

represents the fraction of measurements that have a given value z.  The most likely value is the 

average, in this case <z> = 5.5 cm.  The standard deviation is 1.2.  The central shaded region 

is the area under the curve between (<x> -  and (x + ), and roughly 67% of the time a 

measurement will be in this range.  The wider shaded region represents (<x> - 2 and (x + 

2),  and 95% of the measurements will be in this range.  A statistics course will go into much 

more detail about this.  



 

Problem:  You measure a time to have a value of (9.22 ± 0.09) s.  Your friend 

measures the time to be (9.385 ± 0.002) s.  The accepted value of the time is 9.37 

s.  Does your time agree with the accepted?  Does your friend's time agree with the 

accepted?   

 Answer. 

We look within 2 deviations of your value, that is between 9.22 - 2(0.09) = 

9.04 s and 9.22 + 2(0.09) = 9.40 s. The accepted value is within this range of 

9.04 to 9.40 s, so your experiment agrees with the accepted.  

The news is not so good for your friend. 9.385 - 2(0.002) = 9.381 s and 9.385 

+ 2(0.002) = 9.389 s. The range of answers for your friend, 9.381 to 9.389 s, 

does not include the accepted value, so your friend's time does not agree 

with the accepted value.  

 

 

Problem:  Are the following numbers equal within the expected range of 

values?   

(i) (3.42 ± 0.04) m/s and 3.48 m/s?  

(ii) (13.106 ± 0.014) grams and 13.206 grams?  

(iii) (2.95 ± 0.03) x m/s and 3.00 x m/s 

Answer 

(i) (3.42 ± 0.04) m/s and 3.48 m/s? 

http://www.rit.edu/cos/uphysics/uncertainties/range.html
http://www.rit.edu/cos/uphysics/uncertainties/range.html


The 2-deviation range is 3.34 to 3.50 m/s.  Yes the numbers are equal.  

(ii) (13.106 ± 0.014) grams and 13.206 grams? 

  The 2-deviation range is 13.078 to 13.134 grams.  No the numbers are not 

equal.  

(iii) (2.95 ± 0.03) x m/s and 3.00 x m/s  

The 2-deviation range is 2.89  x to 3.01 x m/s.  Yes the numbers are 

equal.  

 

 

 

4. Relative and Absolute Errors 

The quantity z is called the absolute error while z/z is called the relative error or fractional 

uncertainty. Percentage error is the fractional error multiplied by 100%. In practice, either the 

percentage error or the absolute error may be provided. Thus in machining an engine part the 

tolerance is usually given as an absolute error, while electronic components are usually given 

with a percentage tolerance.  

   

Problem:  You are given a resistor with a resistance of 1200 ohms and a tolerance 

of 5%.  What is the absolute error in the resistance?   

Answer. The absolute error is 5% of 1200 ohms = 60 ohms.  

 

 

5. Propagation of Errors, Basic Rules 

Suppose two measured quantities x and y have uncertainties, x and y, determined by 

procedures described in previous sections: we would report (x ± x), and (y ± y). From the 

measured quantities a new quantity, z, is calculated from x and y. What is the uncertainty, z, in 

z? For the purposes of this course we will use a simplified version of the proper statistical 

treatment. The formulas for a full statistical treatment (using standard deviations) will also be 



given. The guiding principle in all cases is to consider the most pessimistic situation. Full 

explanations are covered in statistics courses.  

The examples included in this section also show the proper rounding of answers, which is 

covered in more detail in Section 6.  The examples use the propagation of errors using average 

deviations.  

(a) Addition and Subtraction: z = x + y     or    z = x - y 

   

Derivation: We will assume that the uncertainties are arranged so as to make z as far from its true 

value as possible.  

Average deviations  z = |x| + |y| in both cases  

With more than two numbers added or subtracted we continue to add the uncertainties.  

 

   

Using simpler average errors Using standard deviations 

 

Eq. 1a 
 

Eq. 1b 

  

Example:  w = (4.52 ± 0.02) cm, x = ( 2.0 ± 0.2) cm, y = (3.0 ± 0.6) cm. Find 

z = x + y - w and its uncertainty. 

z = x + y - w = 2.0 + 3.0 - 4.5 = 0.5 cm 

z = x + y + w = 0.2 + 0.6 + 0.02 = 

0.82  rounding to  0.8 cm  

So z = (0.5 ± 0.8) cm  

Solution with standard 

deviations, Eq. 1b, z = 0.633 

cm 

z = (0.5 ± 0.6) cm 

Notice that we round the uncertainty to one significant figure and round the 

answer to match. 

  



For multiplication by an exact number, multiply the uncertainty by the same exact number.  

   

Example:  The radius of a circle is x = (3.0 ± 0.2) cm. Find the 

circumference and its uncertainty. 

C = 2  x = 18.850 cm  

   

C = 2  x = 1.257 cm (The factors of 2 and  are exact)  

C = (18.8 ± 1.3) cm  

We round the uncertainty to two figures since it starts with a 1, and round the 

answer to match. 

  

Example:  x = (2.0 ± 0.2) cm, y = (3.0 ± 0.6) cm. Find z = x - 2y and its 

uncertainty. 

   

z = x - 2y = 2.0 - 2(3.0) = -4.0 cm  

z = x + 2 y = 0.2 + 1.2 = 

1.4 cm  

So  z = (-4.0 ± 1.4) cm.  

  

Using Eq 1b, z = (-4.0 ± 

0.9) cm. 

The 0 after the decimal point in 4.0 is significant and must be written in the 

answer. The uncertainty in this case starts with a 1 and is kept to two 

significant figures. (More on rounding in Section 7.)  

  

 

 

 



(b) Multiplication and Division: z = x y    or    z = x/y 

   

Derivation: We can derive the relation for multiplication easily. Take the largest values for x and y, 

that is  

z + z = (x + x)(y + y) = xy + x y + y x + x y  

Usually x << x and y << y so that the last term is much smaller than the other terms and 

can be neglected. Since z = xy,  

z = y x + x y  

which we write more compactly by forming the relative error, that is the ratio of z/z, 

namely  

 

The same rule holds for multiplication, division, or combinations, namely add all the 

relative errors to get the relative error in the result.  

   

Using simpler average errors Using standard deviations 

 

Eq. 2a 

 

Eq.2b 

  

Example:  w = (4.52 ± 0.02) cm, x = (2.0 ± 0.2) cm.  Find z = w x and its 

uncertainty.  

z = w x = (4.52) (2.0) = 9.04  

 

So z = 0.1044 (9.04 ) = 0.944  which we 

Using Eq. 

2b we 

get   



round to  0.9 ,  

z = (9.0 ± 0.9) . 

z = 

0.905 

and   

z = (9.0 ± 

0.9)

. 

The uncertainty is rounded to one significant figure and the result is rounded 

to match. We write 9.0 rather than 9  since the 0 is significant.  

  

Example:  x = ( 2.0 ± 0.2) cm, y = (3.0 ± 0.6) sec Find z = x/y. 

z = 2.0/3.0 = 0.6667 cm/s.  

So z = 0.3 (0.6667 cm/sec) 

= 0.2 cm/sec  

z = (0.7 ± 0.2) cm/sec  

Using Eq. 2b we get  z = (0.67 ± 

0.15) cm/sec 

Note that in this case we round off our answer to have no more decimal 

places than our uncertainty. 

 

(c) Products of powers: . 

The results in this case are  

   

Using simpler average errors Using standard deviations 

 

Eq. 3a 

 

Eq.3b 

  



Example:  w = (4.52 ± 0.02) cm, A = (2.0 ± 0.2) , y = (3.0 ± 0.6) cm. 

Find .  

 

 

The second relative error, (y/y), is multiplied by 2 because 

the power of y is 2.   

The third relative error, (A/A), is multiplied by 0.5 since a 

square root is a power of one half.  

So z = 0.49 (28.638 ) = 14.03 which we round to 

14  

z = (29 ± 14)  

Using 

Eq. 

3b,  

z=(29 

± 12) 

 

Because the uncertainty begins with a 1, we keep two significant figures and 

round the answer to match.  

(d)  Mixtures of multiplication, division, addition, subtraction, and powers. 

If z is a function which involves several terms added or subtracted we must apply the above rules 

carefully.  This is best explained by means of an example. 

Example:  w = (4.52 ± 0.02) cm, x = (2.0 ± 0.2) cm, y = (3.0 ± 0.6) cm. Find 

z = w x +y^2 

z = wx +y^
2 

= 18.0  

First we compute v = wx as in the example in (b) to 

get v = (9.0 ± 0.9) .  

Next we compute  

 

 

We have v = wx = (9.0 ± 0.9) 

cm.   

The calculation of the 

uncertainty in is the same 

as that shown to the left. Then 

from Eq. 1b   



Finally, we compute z = v + (y^2) = 0.9 + 3.6 = 

4.5 rounding to 4  

Hence z = (18 ± 4) . 

z =  3.7  

z = (18 ± 4) .  

   

 

 

(e) Other Functions: e.g.. z = sin x. The simple approach. 

For other functions of our variables such as sin(x) we will not give formulae. However you can 

estimate the error in z = sin(x) as being the difference between the largest possible value and the 

average value. and use similar techniques for other functions.  

Thus  

(sin x) = sin(x + x) - sin(x)  

Example:  Consider S = x cos () for x = (2.0 ± 0.2) cm,  = 53 ± 2 °. Find S 

and its uncertainty. 

S = (2.0 cm) cos 53° = 1.204 cm  

To get the largest possible value of S we would make x larger, (x + x) = 2.2 

cm, and  smaller, ( - ) = 51°. The largest value of S, namely (S + S), is 

(S + S) = (2.2 cm) cos 51° = 1.385 cm.  

The difference between these numbers is S = 1.385 - 1.204 = 0.181 

cm  which we round to 0.18 cm.  

Then S = (1.20 ± 0.18) cm. 

 

** (f) Other Functions: Getting formulas using partial derivatives 

The general method of getting formulas for propagating errors involves the total differential of a 

function. Suppose that z = f(w, x, y, ...) where the variables w, x, y, etc. must be independent 

variables!  

The total differential is then  

 
We treat the dw = w as the error in w, and likewise for the other differentials, dz, dx, dy, etc. 

The numerical values of the partial derivatives are evaluated by using the average values of w, x, 



y, etc. The general results are  

   

Using simpler average errors 

 

Eq. 4a. 

Using standard deviations  

 

Eq. 4b 

  

Example: Consider S = x cos () for x = (2.0 ± 0.2) cm,  = (53 ± 2) °= 

(0.9250 ± 0.0035) rad. Find S and its uncertainty. Note: the uncertainty in 

angle must be in radians! 

S = 2.0 cm cos 53° = 1.204 cm 

 

 

Hence S = (1.20 ± 0.13) cm (using average deviation approach) or S = (1.20 

± 0.12) cm (using standard deviation approach.)  

 

 
  



6. Rounding off answers in regular and scientific notation. 

In the above examples we were careful to round the answers to an appropriate number of 

significant figures. The uncertainty should be rounded off to one or two significant figures. If the 

leading figure in the uncertainty is a 1, we use two significant figures, otherwise we use one 

significant figure. Then the answer should be rounded to match.  

Example Round off z = 12.0349 cm and z = 0.153 cm.  

Since z begins with a 1, we round off z to two significant figures:  

z = 0.15 cm. Hence, round z to have the same number of decimal places:  

z = (12.03 ± 0.15) cm. 

 When the answer is given in scientific notation, the uncertainty should be given in scientific 

notation with the same power of ten. Thus, if  

z = 1.43 x s and z = 2 x s,  

we should write our answer as  

z = (1.43± 0.02) x s.  

This notation makes the range of values most easily understood. The following is technically 

correct, but is hard to understand at a glance.  

z = (1.43 x ± 2 x ) s. Don't write like this!  

Problem:  Express the following results in proper rounded form, x ± x.  

(i) m = 14.34506 grams, m = 0.04251 grams.  

(ii) t = 0.02346 sec, t = 1.623 x 10
-3

sec.  

(iii) M = 7.35 x kg M = 2.6 x kg.  

(iv) m = 9.11 x kg m = 2.2345 x kg   

  

 

 



 

Answer  

(i) m = 14.34506 grams, Δm = 

0.04251 grams. 
m = (14.35 +/- 0.04) g 

(ii) t = 0.02346 sec, Δt = 1.623 x 10
-

3 
sec. 

t = (0.0235 +/- 0.0016) 

s or  

t = (2.35 +/- 0.16) x 

10
-3

s or  

(2.35 +/- 0.16) ms 

(iii) M = 7.35 x 10
22

 kg ΔM = 2.6 x 

10
20 

kg. 

M = (7.35 +/- 0.03) x 

10
22

 kg 

(iv) m = 9.11 x 10
-33

 kg Δm = 

2.2345 x 10
-33

 kg 
m = (9 +/- 2) x 10

-33
kg 

 

 

7. Significant Figures 

The rules for propagation of errors hold true for cases when we are in the lab, but doing 

propagation of errors is time consuming. The rules for significant figures allow a much quicker 

method to get results that are approximately correct even when we have no uncertainty values.  

A significant figure is any digit 1 to 9 and any zero which is not a place holder. Thus, in 1.350 

there are 4 significant figures since the zero is not needed to make sense of the number. In a 

number like 0.00320 there are 3 significant figures --the first three zeros are just place holders. 

However the number 1350 is ambiguous. You cannot tell if there are 3 significant figures --the 0 

is only used to hold the units place --or if there are 4 significant figures and the zero in the units 

place was actually measured to be zero.  

How do we resolve ambiguities that arise with zeros when we need to use zero as a place holder 

as well as a significant figure? Suppose we measure a length to three significant figures as 8000 

cm. Written this way we cannot tell if there are 1, 2, 3, or 4 significant figures. To make the 

number of significant figures apparent we use scientific notation, 8 x cm (which has one 

significant figure), or 8.00 x cm (which has three significant figures), or whatever is correct 

under the circumstances.  

We start then with numbers each with their own number of significant figures and compute a 

new quantity. How many significant figures should be in the final answer? In doing running 

computations we maintain numbers to many figures, but we must report the answer only to the 

proper number of significant figures.  

http://www.rit.edu/cos/uphysics/uncertainties/rounding.html
http://www.rit.edu/cos/uphysics/uncertainties/Uncertaintiespart2.html


In the case of addition and subtraction we can best explain with an example. Suppose one object 

is measured to have a mass of 9.9 gm and a second object is measured on a different balance to 

have a mass of 0.3163 gm. What is the total mass? We write the numbers with question marks at 

places where we lack information. Thus 9.9???? gm and 0.3163? gm. Adding them with the 

decimal points lined up we see  

09.9????  
00.3163?  
10.2???? = 10.2 gm. 

In the case of multiplication or division we can use the same idea of unknown digits. Thus the 

product of 3.413? and 2.3? can be written in long hand as  

3.413?  
2.3?  
   ?????  
 10239?  
 6826?  
7.8????? = 7.8 

The short rule for multiplication and division is that the answer will contain a number of 

significant figures equal to the number of significant figures in the entering number having the 

least number of significant figures. In the above example 2.3 had 2 significant figures while 

3.413 had 4, so the answer is given to 2 significant figures.  

It is important to keep these concepts in mind as you use calculators with 8 or 10 digit displays if 

you are to avoid mistakes in your answers and to avoid the wrath of physics instructors 

everywhere.  A good procedure to use is to use use all digits (significant or not) throughout 

calculations, and only round off the answers to appropriate "sig fig."  

Problem:  How many significant figures are there in each of the following?     

(i) 0.00042   (ii) 0.14700   (ii) 4.2 x    (iv) -154.090 x  

Answer 

Question 
Number of Significant 

Figures 

(i) 0.00042 2 

(ii) 0.14700  5 

(ii) 4.2 x 10
6
 2 

(iv) -154.090 x 10
-

27
 

6 

 

http://www.rit.edu/cos/uphysics/uncertainties/sigfig.html


8. Problems on Uncertainties and Error Propagation. 

Try the following problems to see if you understand the details of this part . The answers are at 

the end.  

(a) Find the average and the average deviation of the following measurements of a mass.  

4.32, 4.35, 4.31, 4.36, 4.37, 4.34 grams.  

(b) Express the following results in proper rounded form, x ± x.  

(i) m = 14.34506 grams, m = 0.04251 grams.  

(ii) t = 0.02346 sec, t = 1.623 x sec.  

(iii) M = 7.35 x kg M = 2.6 x kg.  

(iv) m = 9.11 x kg m = 2.2345 x kg  

(c) Are the following numbers equal within the expected range of values?  

(i) (3.42 ± 0.04) m/s and 3.48 m/s?  

(ii) (13.106 ± 0.014) grams and 13.206 grams?  

(iii) (2.95 ± 0.03) x m/s and 3.00 x m/s  

(d) Calculate z and z for each of the following cases.  

(i) z = (x - 2.5 y + w) for x = (4.72 ± 0.12) m, y = (4.4 ± 0.2) m, w = (15.63 ± 0.16) m.  

(ii) z = (w x/y) for w = (14.42 ± 0.03) m/ , x = (3.61 ± 0.18) m, y = (650 ± 20) m/s.  

(iii) z = for x = (3.55 ± 0.15) m.  

(iv) z = v (xy + w) with v = (0.644 ± 0.004) m, x = (3.42 ± 0.06) m, y = (5.00 ± 0.12) m, w 

=    (12.13 ± 0.08) .  

(v) z = A sin y for A = (1.602 ± 0.007) m/s, y = (0.774 ± 0.003) rad.  

(e) How many significant figures are there in each of the following?  

(i) 0.00042   (ii) 0.14700   (ii) 4.2 x    (iv) -154.090 x 10
-27

  

(f) I measure a length with a meter stick which has a least count of 1 mm I measure the length 5 

times with  results in mm of 123, 123, 124, 123, 123 mm. What is the average length and the 

uncertainty in length?  

 



 

Answers for Section 8: 

(a) (4.342 ± 0.018) grams  

(b)  i) (14.34 ± 0.04) grams      ii) (0.0235 ± 0.0016) sec or (2.35 ± 0.16) x  sec  

   iii) (7.35 ± 0.03) x kg   iv) (9.11 ± 0.02) x kg  

(c) Yes for (i) and (iii), no for (ii)  

(d) i) (9.4 ± 0.8) m   ii) (0.080 ± 0.007) m/s   iii) (45 ± 6)    iv) 18.8 ± 0.6)    v) (1.120 ± 

0.008 m/s  

(e) i) 2   ii) 5   iii) 2   iv) 6  

(f) (123 ± 1) mm (I used the ILE = least count since it is larger than the average deviation.)  

  



9. Glossary of Important Terms 

   

Term Brief Definition 

Absolute error 

The actual error in a quantity, having the same units as the 

quantity. Thus if   

c = (2.95 ± 0.07) m/s, the absolute error is 0.07 m/s. See Relative 

Error. 

Accuracy 

How close a measurement is to being correct. For gravitational 

acceleration near the earth, g = 9.7 m/s2 is more accurate than g = 

9.532706 m/s2. See Precision. 

Average 
When several measurements of a quantity are made, the sum of 

the measurements divided by the number of measurements. 

Average 

Deviation 

The average of the absolute value of the differences between each 

measurement and the average. See Standard Deviation. 

Confidence 

Level 

The fraction of measurements that can be expected to lie within a 

given range. Thus if m = (15.34 ± 0.18) g, at 67% confidence level, 

67% of the measurements lie within (15.34 - 0.18) g and (15.34 + 

0.18) g. If we use 2 deviations (±0.36 here) we have a 95% 

confidence level. 

Deviation 
A measure of range of measurements from the average. Also called 

error oruncertainty. 

Error 
A measure of range of measurements from the average. Also called 

deviation or uncertainty. 

Estimated 

Uncertainty 

An uncertainty estimated by the observer based on his or her 

knowledge of the experiment and the equipment. This is in 

contrast to ILE, standard deviation or average deviation. 

Gaussian 

Distribution 

The familiar bell-shaped distribution. Simple statistics assumes that 

random errors are distributed in this distribution. Also called 

Normal Distribution. 

Independent Changing the value of one variable has no effect on any of the 



Variables other variables. Propagation of errors assumes that all variables are 

independent. 

Instrument 

Limit   

of Error (ILE) 

The smallest reading that an observer can make from an 

instrument. This is generally smaller than the Least Count. 

Least Count 
The size of the smallest division on a scale. Typically the ILE equals 

the least count or 1/2 or 1/5 of the least count. 

Normal 

Distribution 

The familiar bell-shaped distribution. Simple statistics assumes that 

random errors are distributed in this distribution. Also called 

Gaussian Distribution. 

Precision 

The number of significant figures in a measurement. For 

gravitational acceleration near the earth, g = 9.532706 m/s2 is 

more precise than g = 9.7 m/s2. Greater precision does not mean 

greater accuracy! See Accuracy. 

Propagation of 

Errors 

Given independent variables each with an uncertainty, the method 

of determining an uncertainty in a function of these variables. 

Random Error 
Deviations from the "true value" can be equally likely to be higher 

or lower than the true value. See Systematic Error. 

Range of 

Possible  

True Values 

Measurements give an average value, <x> and an uncertainty, x. 

At the 67% confidence level the range of possible true values is 

from <x> - x  to <x> + x. See Confidence Level . 

Relative Error 

The ratio of absolute error to the average, x/x. This may also be 

called percentage error or fractional uncertainty. See Absolute 

Error. 

Significant 

Figures 

All non-zero digits plus zeros that do not just hold a place before or 

after a decimal point. 

Standard 

Deviation 
The statistical measure of uncertainty. See Average Deviation. 

Standard Error  

in the Mean 
An advanced statistical measure of the effect of large numbers of 

measurements on the range of values expected for the average (or 



mean). 

Systematic 

Error 

A situation where all measurements fall above or below the "true 

value". Recognizing and correcting systematic errors is very 

difficult. 

Uncertainty 
A measure of range of measurements from the average. Also called 

deviation or error. 

 


