Physics 252
Guide to measurement and data
analysis

Adapted from lectures by Prof.
Joanna Kiryluk



Why do we do experiments?

Two types of experiments to learn about the physical world:

" parameter determination
e.g. measure body temperature

" hypothesis testing

e.g. testing whether body temperature
iIncreased since this morning

IS hot enough

Our conclusion, e.g.“We have made a world shattering
discovery!” depends on the accuracy of our measurement.




Experimental Data / Results

Histograms
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One entry (x) in this histogram
means one measurement (e.g. one score for every student) 28
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Continuous distribution:
iInfinite number of measurements

spread

Xtrue



Types of experimental uncertainties:
Random uncertainties

Continuous distribution

oy , (infinite number of measurements)
=» statistical errors (arise from the

iInherent statistical nature of the n
phenomena being observed) and/or
iInstrumental errors (arise from

instrumental imprecisions)
spread

=» in a series of repeated measure-
ments they produce slightly different
values of the measured parameter x,,,,

= may be handled by the theory of Xtrue

statistics
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Types of experimental uncertainties

Systematic uncertainties

=»uncertainties in the bias of the data

=» in a series of repeated measure-
ments they produce results that
systematically shifted in the same
direction by the same amount from the
true value of the measured parameter

=» difficult to identify the possible
sources and estimate their magnitude.
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Mistakes

=» Similar to systematic uncertainties in nature
=>» Can be difficult to detect

Example1:

Writing 2.34 kHz instead of 2.43 kHz
In your lab book. If not immediately correcte
will effect the precision of your result.

o1

Other examples:
Misreading scales, confusion of units, etc. shift

Good experimentalist makes very few, if any,
such mistakes (we’'ll not discuss it further)
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Mistakes

The Gimli Glider Incident (1983), from an artt"cle published in Soaring Magazine by Wade H.Nelson

A Boeing 767 aircraft (Air Canada Flight 143) ran out of fuel mid-flight in 1983.
Reason: misunderstanding between metric and imperial units of volume.

The crew used 1.77 pounds per liter, instead of 0.8 kg per liter of kerosene.
(emergency landing in Gimli, Canada)



Ehe New York Times

WORLD US. NY./REGION BUSINES IS a eS

POLITICS EDUCATION TEXAS

JET'S FUEL RAN OUT AFTER METRIC CONVERSION

ERRORS

By RICHARD WITKIN

Published: July 30, 1983

Air Canada said yesterday that its Boeing 767 jet ran out of fuel in Ei racesook / :
midflight last week because of two mistakes in figuring the fuel W TWITTER

supply of the airline's first aircraft to use metric measurements. 5§ coootes

The Gimli Glider Incident (1983), from an article published in Soaring Magazine by Wade H.Nelson

A Boeing 767 aircraft (Air Canada Flight 143) ran out of fuel mid-flight in 1983.
Reason: misunderstanding between metric and imperial units of volume.

The crew used 1.77 pounds per liter, instead of 0.8 kg per liter of kerosene.
(emergency landing in Gimli, Canada)



Types of experimental uncertainties
Systematic uncertainties

=»uncertainties in the bias of the data

=>» in a series of repeated measure- n‘ "

mel

3}’3 Ensure apparatus is properly calibrated and zeroed.
ire

true . D, .

No simple rules for eliminating systematic errors:
> ( common sense + experience!
sou

Xtrye
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Most realistic situation:
Random and Systematic uncertainties

7 0-9Kg

+ shift

Xtrye

X can have a meaning of any measured quantity (e.g. box weight,
acceleration due to gravity, etc)



A good experimental physicist:

E

frad

E

E
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C’MON, OPPENHEIMER...

THEYRE READY FOR THER ) minimizes and realistically

estimates the random
errors of his/her apparatus

and

reduces the effect of
e systematic errors to much
smaller levels.

R.Muller, “The Instant Physicist”
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Multiple measurements: distribution

A) Random uncertainties dominate i.e. B) Random uncertainties much smaller than
Measurement tool accuracy (systematic error)  the measurement tool accuracy (systematic
smaller than the bin size (device “calibrated” i.e. error)

no offsets)

7

nr ] ) N /
Here o = 0.1m (<0.25m bin size) tot —
1 y

- / \
0 "/I 1 1 1

° 1 2 3 X[m] 0 5 x[mi

Histogram (finite number of measurements)

Total number of measurments:

Niot = N (bin1)+N (bin2)+ .... 41
Function (infinite number of measurements)



Multiple measurements: distribution

C) Random uncertainties dominate i.e. D) Random uncertainties much smaller than
Measurement tool accuracy (systematic error)  the measurement tool accuracy (systematic
smaller than the bin size (device not “calibrated” error)

l.e. there is an offset of 4m)

7

n - Here oge 1= 0.1m (<0.25m bin size) N,
t | and ogysio = 4m (dominant; this is tot -
actually an errgr;-should be found
and corrected)

/
Lt N

0 5 6 7 X[m] 4 9 X[mj

T

Histogram (finite number of measurements)

Total number of measurments:

Niot = N (bin1)+N (bin2)+ .... 43
Function (infinite number of measurements)



Characteristic of the a distribution

X

» Sample mean p m 31_
3 oy -

= Sample variance ¢?2

10 |

P

0 5 10
X ——b

One entry (x) in this histogram
means one measurement

One measurement has an uncertainty of o
(we'll learn how to estimate it in Lecture2)
Result of an individual measurement

X+ o
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How to present final experimental measurement results
Proper rounding.

Incorrect: (1.89999679 + 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round to 2 most significant

numbers. If the 3" numberis > 5 then the 2" significant number must
be increased by 1, i.e. 0.00346 ~ 0.0035.

2. Rounding the result is now straightforward:
Correct: (1.9000 £+ 0.0035) [m]
1.9000(35) [m]
(19000 £+ 35) x104 [m]
19000 (35) x104 [m]

Note: if the uncertainty is 0.0035, then it does not make sense to keep as many

numbers in the measured value as possible (e.g. as your calculator displays), since
1.89999679 numbers marked in purple are not significant.



Rounding:

Lab reports: points will be subtracted if final results

are not rounded properly

Exercises:

A. (1.9 +/- 0.189) [m]
B. (1.89999679) +/- 0.189 [m]
C. (1.90 +/- 0.19) [m]

D. (1.9 +/- 0.2) [m]

E. (23.24555 +/- 2.234) [m]
F. (23.2 +/-2.2) [m]

G. (23 +/- 2) [m]

H.

. (0.0001238 +/- 0.0000057) [m]
J. (0.000124 +/- 0.000006) [m]
K. (1.24 +/- 0.06)x10-4 [m]

L. 1.24(6) x10* [m]

(0.00012378 +/- 0.00000568) [m]

Which are
correct and which are
iIncorrect?



How to present final experimental measurement results.
Proper rounding (important for PHY252)

Example
Incorrect rounding: (1.89999679 + 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round to 2 most significant
numbers. If the 3" numberis > 5 then the 2" significant number must
be increased by 1, i.e. 0.00346 ~ 0.0035.

2. Rounding the result is now straightforward:
Correct: (1.9000 + 0.0035) [m]
1.9000(35) [m]
(19000 + 35) x104 [m]
19000 (35) x104 [m]

Note: if the uncertainty is 0.0035, then it does not make sense to keep as many
numbers in the measured value as possible (e.g. as your calculator displays), since
1.89999679 numbers marked in purple are not significant.




Rounding:
Lab reports: points will be subtracted if final results
are not rounded properly

Group work:

A. (1.9 +/- 0.189) [m]
B. (1.89999679) +/- 0.189 [m]

C. (1.90 +/- 0.19) [m] -
D. (1.9 +/-0.2) [m] Which are |
correct and which are
(23.24555 +/- 2.234) [m] incorrect”? Round

E.
F. (23.2 +/-2.2) [m] properly incorrect
G. (23 +/- 2) [m] ones.

H.

(0.00012378 +/- 0.00000568) [m]
. (0.0001238 +/- 0.0000057) [m]
J. (0.000124 +/- 0.000006) [m]
K. (1.24 +/- 0.06)x10 [m]
L. 1.24(6) x10* [m]



Experiment, Outcome, Event and Probability

Dommiton T e

An experiment is a situation involving chance or probability that leads to the experiment is spinning

results called outcomes. the spinner.

An outcome is the result of a single trial of an experiment. The possible outcomes are landing on yellow,
blue, green or red.

An event is one or more outcomes of an experiment. One event of this experiment is landing on blue.

Probability is the measure of how likely an event is. The probability of landing on blue is ?

In order to measure probabilities, mathematicians have devised the following formula for finding the probability of an event.

Probability Of An Event

_ The Number Of Ways Event A Can Occur < ( ) <
P(A) The total number Of Possible Outcomes O =P(A)=1

The probability of an event is the measure of the chance that the
event will occur as a result of an experiment

http://www.mathgoodies.com/lessons/vol6/intro _probability.html



Probability Interpretations

“It is possible for an exp. physicist to spend a lifetime analyzing data without
realizing that there are two different fundamental approaches to statistics.”

L.Lyons
1. Relative frequency (frequentism)
A, B ... are outcomes of a repeatable experiment

P(A) = lim times outcome is Al common in experimental
n—oo n physics (this course)

e.g. particle scattering, radioactive decay... (most useful in HEP)

2. Subjective probability (bayesianism)
A, B, ... are hypotheses (statements that are true or false)

P(A) = degree of belief that A is true

can provide more natural treatment of non-repeatable phenomena:

e.g. systematic uncertainties, probability that Higgs boson exists ...
12

G. Cowan. “Statistical Data Analvsis”



Measurement and Probability Distributions

» Measurement is a random process described by an abstract
probability distribution whose parameters contain the
information desired.

= The results of a measurement are then samples from this
distribution which allow an estimate of the theoretical

parameters.

Now we’ll expfain what this means ....

13



Probability distribution functions,
expectation values and moments

14



Multiple measurements: distribution

)

)N

x|

Continuous line is a
known function
(typically Gaussian)
so called Probability
Distribution Function
(PDF)

15



Probability Distribution Functions

Many pdf’ s, large number of problems in physics are
described by a small number of theoretical distributions:

Distribution Example
— (Gaussian Measurement error
—— Poisson Number of events found
— y? Goodness-of-fit

Poisson, Gaussian PDF’s — most common in experimental physics

16

G. Cowan, “Statistical Data Analysis”



The Gaussian Distribution

The Gaussian (also called “normal”) pdf plays a central role in all of statistics
and is the most ubiquitous distribution in all the sciences. Even in cases
where its application is not strictly correct, the Gaussian often provides a
good approximation to the true pdf’s. It is defined as:

= 1 (x_u)z

3 o’ =0.2 _ 2062
P(x) ¢ P(x)_a o

Described by two parameters: u, o

Expectation value (mean): Elx]=u
Variance: V[x] = o
Standard deviation: O




Example:

gnuplot>
gnuplot> PI=3.14; s=1; m=1;

gnuplot> gauss(x)=1./(2%PI*s*%2)%%0.5%exp(—(x-m)**2/(2%s%%2))

gnuplot> set xlabel 'x'
gnuplot> set ylabel 'gauss(x)'
gnuplot> plot gauss(x)
gnuplot> ||

Assignment (do @ home)

Using gnuplot, plot P(x) = Gaussian functions with u=0.1 and

a) o> =0.2
b) 62 =0.5
C) 62 =1

parameters.

0.4

0,35

0.3 F

0,25 -

gauss(x) ——

10



Characteristics of Probability Functions

Random processes: described by the probability density function (pdf)
which gives the expected frequency of occurrence for each possible

outcome (random variable x).

Example:
The process = throwing a single die, then x={1,...,6} and P(x)=1/6

The random variable is then said to be distributed as P(x).

Random PDF Integral Normalization
variable P(x;=x=ux,)
Discrete | P(X): =EP(X') EP(x.) 1

frequency at each x; i ,-
Continuous | P(x): probability of

finding x in interval X
tox +dx is P(x )dx’ i




The area under the Gaussian bewteen integral intervals of ¢

- an important practical quantity

0.05F

0.4F
ossf
o3f
0253
ozf
OAsf

0.1F

0.05F

0.4F
0355
osf
mzsf
ozf
0155

0.1F

0.05F

0.4F
ossf
a3f
ozsf
azf
OAsf

0.1F
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The Poisson Distribution

04

P(n) o2}

0

04

02
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n

Example (important):

H=2 |
WMHHM
0 5 10 15 20
u=>
HHHHHHHH -
0 5 10 15 20
u=10
2ol ”W | W” l0na.
0 5 10 15

20

u

u'e
n!

P(n) =

Described by one parameters: n

Expectation value (mean): Elnl=u
Variance: Vin] = u
Standard deviation: o = \/ﬁ

In all counting experiments, for m observed events (m is “large”),
the standard deviation (i.e. uncertainty) is +/m

G. Cowan, “Statistical Data Analysis”
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Expectation Values, Distribution Moments

For a continuous random variable x with pdf P(x):
— here we do not define or choose what the pdf P(x) is
Expectation value of x: F[x] = fx P(x) dx

The r-th moment of x about x,: E[(x - x,)’] .
" 1st moment about x,=0 e \— o

u=FE[x]= fx P(x) dx| (mean)

= 2nd moment about x,=p (Variance) f

o’ =V[x] = E[x’]-u’ = E[(x -0’1 = [ (x =w)* P(x) dx

6 =0 (Standard deviation) 23



Extra material (more advanced statistics/labs than PHY251/252)

Multivariate distributions
For continuous random variables x,y with pdf P(x,y):

= Means:
u, = Elx] = ffo(x,y) dxdy
w, = E[y] = ffyP(x,y) dxdy

» [/ariances:

2= E[x*]-w = E[(x —u)’ 1= [[ (x —w)? P(x,y) dxdy
= E[y’1-w = E[(y -u,)’1= [ (y -u,)* P(x,y) dxdy

24



Extra material (more advanced statistics/labs than PHY251/252)
Multivariate distributions, the covariance

For continuous random variables x,y with pdf P(x,y):

» Covariance:
- a measure of the linear correlation between the two variables.

cov(x,y) = E[xy]-uu, = E[(x —u)(y —u,)]
~ [[[(x=u)(y =) P(x,y) dxdy

» Correlation coefficient:

cov(x,y) -1

pxy = pxy

0,0,

25



Extra material (more advanced statistics/labs than PHY251/252)

|Student ‘GPA ‘Days Present

1 4.00 180.0 A

2 2.50 150.0 t

3 4.00 170.0 g

4 3.90 180.0 9

5 3.75 177.0

6 3.80 180.0 o

7 2.90 140.0 C

8 3.10 169.0 e

9 3.25 168.0

10 3.40 152.0

11 3.30 150.0

12 3.90 170.0 : .

T aas o Assumptlon. studgqts pay
4 4.00 180.0 attention and participate in
15 1.00 108.0

the class activities.

Independent variables: no correlation



Extra material (more advanced statistics/labs than PHY251/252)
Correlation Coefficient - Examples

cov(x, y) ‘ ‘ i
P,y = <
Xy Pay| =
0,0,
) 10 Y 10
ik (a) | .. g g I % . (b) |
: i
p=0.75 4 p=—0.75
2 2
0 - 0
0 2 4 5 8 10 0 2 4 5 8 10
Y10 : T T Y 10 T T
. (c) : g (d)
Y _’ 6
p = 0.95 . p = 0.25
2 2
0 . 0
0 2 4 6 8 10 0 2 4 6 8 10
X X 28

G. Cowan, “Statistical Data Analysis”



Sampling, sample moments
and parameter estimation

Measurement is a random process described by an abstract probability
distribution whose parameters contain the information desired. The
results of a measurement are then samples from this distribution which
allow an estimate of the theoretical parameters.

Sampling = experimental method by which information can
be obtained about the parameters (like mean and variance)
of an unknown distribution.

It is important to have a “representative” and “unbiased” sample.
Do NOT reject any data just because it does not “look right™!

You must find a reason for excluding the data (and only if a

mistake cannot be corrected) 31



Characteristic of the a distribution

= Sample mean X . |
—>estimate of true value n | \
S, O

: 2 .
= Sample variance s / \

—estimate of variance 2 v — :

32



Sample Moments

Let X4,X,,....,X, D& a sample of size n from a distribution with
theoretical mean p and variance o2 (both unknown).

u estimator): F
X1 Xp e X2

= Sample variance (c? estimator):

YU R Y e

n-1

> variance on the mean:

more data help to determine the mean to higher accuracy




Characteristic of the a distribution

_ 1
= Sample mean X m 31_
—~estimate of true value p = s
10 F
: 2
= Sample variance s 5t .
—>estimate of variance c? L

S= uncertamty ona Smgle One entry (x) in this histogram
measurement means one measurement

u= uncertainty on the mean!
34



Example:

In an experiment consisting of 10 independent
measurements, we measured the speed of Earth
Vg in its revolution around the Sun and got the
following results:

: 1. vg= 29.7 [km/s
3 2.vg=29.9 [km/s
. 3. vg= 29.9 [km/s]
R e i o 4.ve=39.9 [km/s]
E T e 5. vg=29.8 [km/s]
= 6. ve= 30.0 [km/s]
7. veg=39.7 [km/s]
8. vg= 29.9 [km/s]
9. vg= 29.8 [km/s]

10. ve= 30.0 [km/s]

What is the best estimate (and its uncertainty) for vg?
What is a single measurement uncertainty on vg?



=(29.7429.9+29.9429.9+29.8 +30.0 +29.7+29.9 +29.8 +30.0) k/s]
=29.853394 [km/s]
5 = i}(xi %) =1[(29.7-7)22 +(29.9-Y): +(29.9-7)22 +(29.9-Y)22 +(29.8-Y): +
+ (30.0-?) +(29.7—Y) +(29.9-§) +(29.8—Y) +(30.0—i) ] [km? /5]
=0.009456 [km® /s°]

> 0.009456
w2 1(9) [km?/s*] = 0.0009456 [km?/s”]

n
u=0.030751 [km/s] = 0.03[km/s]

Result: | Ve 0, =X +u=(29.85+0.03) km/s]
@home Use Excel and make your
computer do all the work for you!

Note: a single measurement has an uncertainty of s=sqrt(s?) (not u!)
each measurement from the previous page e.g. vg= 29.8 +/- 0.1 [km/s]




The meaning of sigma

Example
We measure the lifetime of the neutron:

T+0_ =950+ ZO[S]
A certain theory predicts:
T, = 910[S]
To what extend are these numbers in agreement?




Recall:

The meaning of sigma

eg.if x=u+o0=

eg.ifx=u-20=

f

1




0.5

P(f>l")o.1

0.05

0.01

0.005

0.001
0

T

1

T

| [IIII]

T

The meaning of sigma

[ |

Ll il

1

x==

11144l

1

1

1.0

0.2 1
P(‘f‘>r)

0.02

0.01

|

30-002

Fig. 1.7. The fractional area in the tails of a Gaussian distribu-
tion, i.e. the area with f greater than some specified value r, where
f is the distance from the mean, measured in units of the stan-
dard deviation. The scale on the left hand vertical axis refers to
the one-sided tail, while the right hand one is for | f | larger than

r. Thus for r = 0, the probabilities are # and 1 respectively.




The meaning of sigma

Example
We measure the lifetime of the neutron:

T+0_ =950+ ZO[S]
A certain theory predicts:
T, = 910[S]
To what extend are these numbers in agreement?

-7, 40

2 (t-7,=20,)

Or 20 “2 sigma difference”
Interpretation: The corresponding probability is 1-0.955=0.046 i.e. 4.6%.

If 1000 experiments of the same precision as ours are performed, if the theory is
correct, and if there are no biases, then results from 46 experiments will differ

from the theoretical value by at least as much as ours does. 5




Error propagation

Example2: h (t) =gt%/2

Evaluate g, and its uncertainty o4, assuming we measured h and t (4 measurements tot:

and we know the precision of h and t to be ¢,,=0.01m and o; = 0.01s respectively.
h=0m Assume h andt are uncorrelated.

g +/- 47
10.00 m +/- 0.01m 1.43 s +/- 0.01s
20.00 m +/- 0.01m 2.02 s +/-0.01s
30.00 m +/- 0.01m 2.47 s +/- 0.01s
40.00 m +/- 0.01m 2.86 s +/- 0.01s

h=40m




Error propagation

Suppose we measured a set of e.g. n variables: x4,X,,...X,. with uncertainties c,4, c,»
...0,, and covariances cov(xq,X5), ... COV(X,.1,X,). Consider a function f=f(x4,X5,...X).
What is the variance of f i.e. (c7)?(f is determined from x4,X,,...x,; we want to know
what’s the uncertainty on f knowing uncertainties on x4,X,,...X, and their covariances)

(] (L (L o

+2( i )( i )cov(xl,x2)+ ....... +2(8f )( i )cov(xl,xn)+ ..... +2( i )(;f )cov(xn_l,xn)

0x, 0x

n

Special case: if x4,X,,...X, are uncorrelated (THIS CLASS):
cov(X4,X»)=0, ... cov(X,.1,X,)=0, then the variance of f is:

o; = (;i) o’ +(af) O+, +(;—f) o
X, X X

2

The most general case, this formula works for
all functions and small uncertainties.




Error propagation

Example1: f=f(x,y,z), where x,y and z are uncorrelated.
The variance of f is:

o; = (2—f) o +(3—f) o, +(3—f) o’
X y Z

Note: if there are more then 3 variables which are measured, one should add more
terms in above equations. If there are less than 3 variables (e.g. only x and y are
measured, one should remove all terms with z variable in above equations).



Combining Uncorrelated Errors: Special cases

Let f = f(x, y) and variables x, y are uncorrrelated

0,0, - known,cov(x,y)=0
= | [near case:

f=x=xy

2

Oy

2 2
=0, +0,

= Products

f=x"

(&)Z _ (G_) +b2(ﬁ
/ X y

)2

<— absolute errors are relevant

f=xy, f=xly

(7] -3

Fractional errors are relevant and must be small !
(for larger errors, use a numerical method)




Error propagation

Example2: h (t) =gt%/2
Evaluate g, and its uncertainty o4, assuming we measured h and t (4 measurements tot:

and we know the precision of h and t to be 5,,=0.01m and o, = 0.01s respectively.
Assume h andt are uncorrelated.

g(h,t) = 2ht =2
Variance: (o) =(g_i)2(0'h)2 + (Z—‘i)z(ﬂt)z

g
= 2t~ %
oh
% = 2h(-2)t3=-4h¢t3

(05)? =(2t72)2 (o) + (=4 ) (,)?
(05)2 =(=5) (0)? +(X2) (00)?
16h°

)(O't)z

Standard deviation: g, =\/(t4) (op)? + (
(uncertainty)



Error propagation

Example2: h (t) =gt¥/2
Evaluate g, and its uncertainty o4, assuming we measured h and t (4 measurements total
and we know the precision of h and t to be ¢,,=0.01m and o; = 0.01s respectively.

h=0m Assume handt are uncorrelated.

10.00 m +/- 0.01m 1.43 s +/- 0.01s
20.00 m +/- 0.01m 2.02 s +/-0.01s
30.00 m +/- 0.01m 247 s +/- 0.01s
40.00 m +/- 0.01m 2.86 s +/- 0.01s

Exercise @ home :
Fill this table out

h=40m




Combining Results of Different Experiments

9383

Mf-gi

(MeV7c?) |

9382

1 1 1 | 1 J

1960 1970 1980 1990

Year —

Fig. 1.11. The world average value of the proton mass My, as a
function of time. The mass is quoted in MeV/c?. In these units,
the electron mass is 0.5109991 MeV/c?, with an error of 2 in the

last decimal place. (Based on information from the Particle Data
Group.)

12



Combining Results of Different Experiments

When n experiments measure the same physical quantity
and give a set of results a; with different uncertainties o7, then
the best estimate of ¢ and its accuracy o':

L

n n

2Ver) 2er)

i=1 i=1

Each experiment is to be weighted by a factor 1/c; In this approach
we do not check the degree to which a, are mutually consistent.

Exercise: calculate a when all experiments have the same
accuracies (o; are the same)

n

2
0)0?) :
El( l/ l 1 n 02 1 | ) ()'l_
a=-= o7 =const 147 ;Eai oo o =const O =
i=1

> (1/0?) >(1/o?) "

i=1 i=1




Least squares fitting

= Hypothesis testing
= Parameter fitting

17



Least squares fitting

Table 2.1. Possible fitting functions

The set of data points y°* is compared with the
corresponding theoretical predictions y'* via eqn
(2.1). Some possible examples of y**(z) are given,
with the parameters involved in the theoretical
predictions being shown explictly.

want a weighted fit

don’t use plotting tool from 1st

year labs! (it doesn’t use
uncertainties of individual

datapoints = not a weighted fit!)

Type y'h Parameters
Constant c ¢
Proportionality mz m
Straight line  gx+b a,b
Parabolic a + br + cx? a,b,c
Inverse powers a + b/z +--- a,b,...
Harmonic Asin k(z — z9) Ak, zg
Fourier ) @ncosnz ag,a,az, ...
Exponential Aer= A A

F(z,aq),z<¢c
Mixed a),02,¢C

Fa(z,02),2 > ¢
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The Least Square Method

Suppose we measured n points at X; and got results: fx0,
We want to fit a function g to these data g(x;;q,,a,,....a,) = where
a.,a,,...a, are unknown parameters to be determined and m<n.

The method of least squares (also called as chi-square 2 minima-
lization) states that the best values of a; are those for which the sum:

- 12
n o
S=E Ji—8(x;3a;)) 2
. g.
i=1 | i.f l If f, is Gaussian distributed with
iS @ minimum. mean g(x;a;) and variance (o, )*

This method is general and does not require parent distributions.

To find a; one must solve the system of equations 5 -0
oa .

J

Depending on the function g(x), equation may or may not yield on analy-
tic solution. In general, numerical methods must be used to minimize S.



Linear Fits. The straight line.

Let’ s consider a function: g(x)=ax+b, where the parameters
parameters a and b are to be determined. The function S is:

S=E(ﬁ_a§_b)2

Oi,f

Taking partial derivatives:

—ax. — 1
§=_2E(ﬁ Cl-xl b)-xl -0 A = L B = —
da Ol%f O'l%f Olf

>

§=_22(fl—axl—b)=0 CEEL;’ D= x_lz

ob o’ O, Oizf
" 'xi ] F— f;

E=Yy-tL =EU_2



Linear Fits. The straight line.

g(x)=ax+b
EB-CA
2(-E+aD+bA)=0 ‘= DB_ A2
2(-C +aA+bB)=0 , _ DC - EA
DB - A’

Where A through F are determined from the data:

AE;“_;CE DE—

BELEE” sz



Linear Fits. The straight line.

g(x)=ax+b Not derived here

EB-CA |,2__ B
2(—E+aD+bA)=O ‘= DB_ A2 “ DB- A’
2(-C +aA +bB) =0 p DC-EA | o D

DB - A? DB - A*

Where A through F are determined from the data:

AE;“_;CE DE—

B= L L = Exf F = Ef 22



Special case: |g(x)=ax+b

We already know the slope (e.g. from some theory)
Want to measure the offset b only.

S (ﬁ—axi—b) ~ (fl.—axl.—b)2
£=_2E o’ =0 S_E o’

l

1 (f, —ax,) B
b= 2 2 > %= 1

S ; T
52 \ o2

i.f if

if
23



Example: Find the best straight line through the
following measured points:

X 0 1 2 3 4 5
f 0.92 14.15 |19.78 |{14.46 |17.26 |21.9

c 0.5 [1.0 |0.75(1.25 |1.0 1.5

=301

tl Try to find the best fit
; | line at home!
20 . -
: { Being able to do this is
15 | needed in many labs!
10 { see also
: http://skipper.physics.sunysb.edu/~j
. oannal/Lectures/PHY-251-
A A T T 252/PHY251IPHY252-Ieast-schares-
0 1 2 3 4 5 6 4

X example.pdf



Result:

a=4.227 b=0.879
(6,)2=0.044 (c,)?=0.203

Rounding:

= 2 significant digits
b=0.88+x045
a=423+0.21

= 1 significant digit
b=09+0.5
a=42+0.2

> 30r

¥2 | ndf
p0
p1

2.078/4
0.8792 + 0.4505
4.227 + 0.2095

25)
20f
15}

101
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Always round the fit results (a and b) and their

uncertainties to the same significant digit

Can you reproduce those numbers using the derived formulas?
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