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Modern Physics

Why do we do experiments?  
Introduction to data analysis

Laszlo Mihaly, 2022 Spring

Textbook:
L. Lyons, “A Practical Guide to Data Analysis for Physical Science Students”

Partially based on slides by Prof. Joanna Kiryluk, Prof. Giacinto Piacquadio and 
graduate students Darin Mihalik & Jonathan Pachter

Experiment, Outcome, Event,  Probability

• The probability of an event is the measure of the chance that  
the event will occur as a result of an experiment.

 An experiment is a situation involving 
chance or probability that leads to 
results called outcomes.

 The outcomes are the possible results 
of a repeated experiments.

 An event is one possible outcome.
 The probability is the measure of how 

likely an event is. 

 The experiment is throwing a dice.

 The outcomes are the top face showing 1 or 2 
or .. Or 6 dots

 An event is when you get 3.
 For a fair dice, the probability of getting a 3 is   

???
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Discrete data/results

If data comes in discrete number → Histogram

x in this histogram represents a range of experimental result between x and x+ D, 
where D is the bin size.  x increases in steps of D.

y is the number of events (experimental results falling in that range

(a) each experiment represented  by a bar → 
difficult to visualize  distribution

Binning: count how many events fall within a certain 
range.  In  (b) and (c) the bin size is 0.2m, but (c) 
has much more events. The more the events (data),  
the finer it can be binned.

In order to make the height of the histogram  
basically independent on the binning, choose 

Y scale properly.

Number of events in each bin
→ Use number of events in each bin, divided by 

bin length (~dN/dh)

(e) In the limit of an infinite number of  experiments, 
a continuous probability distribution f(h) is obtained

Nexp →∞

Data continuous: Measure the height of 30 year old men
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Continuous probability  distribution (pdf)

• Can be a good approximation already when the number of  
performed experiments is large!

• Let’s see how such distribution typically looks like:

• The experimental measurements  
are typically spread around the  
true value xtrue, that we’d like to  
measure.

Continuous distribution (infinite number of measurements)

• Statistical uncertainties: arise from the  
inherent statistical nature of the  
phenomena being observed, for 
example, nuclear decay experiments
and/or limited  instrumental precision, 
for example the fifth digit of the 
voltmeter fluctuates randomly.)

• A series of repeated measurements results  
in parameters "x" randomly distributed  
around the true value we want to measure 
“xtrue”

• May be handled by the theory of statistics

Type of uncertainties: Random
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Type of uncertainties: Systematic

• Comes from a possible bias of the  
experimental result from the true value we  
want to measure

• E.g. a series of repeated experiments  
results in measurements that are  
systematically shifted in the same direction  
by the same amount from the true value

• Can’t be cured by accumulating more data
• Possible sources of this uncertainty are  

typically difficult to identify.

How to avoid/reduce them?

(1) Ensure apparatus is properly calibrated and zeroed
(2) No simple rule for eliminating systematic errors:

good  theory knowledge + common sense +
experience!

Type of uncertainties: Mistakes

Similar to systematic uncertainties in nature

It somewhat differs from the systematic  
uncertainties since you don’t expect it, and  
thus typically don’t associate an error to it

Example 1:
Writing 2.34 kHz instead of 2.43 kHz in your
lab book. If not immediately corrected, it will
affect the correctness of the result.

Other examples:
Misreading scales, confusion of units, a  
physics effect you forgot to consider, etc.

A good experimentalist avoids such mistakes by careful cross-checks: e.g.  
understand step-by-step if results are in line with expectations, use  
multiple methods to verify them and their systematic errors, etc.
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Mistakes

Mistakes can happen even to senior scientists

However, no result is accepted in the scientific community  
before further careful cross-checks (especially if it violates
a cornerstone of physics as the Special Theory of Relativity)
At the end, the original authors of the study found out
their mistake (a loose cable!). Nevertheless, such mistakes  
can cost a lot in terms of career! Learn how to avoid them!

Most realistic situation:
random and systematic uncertainties

x can have a meaning of any measured quantity (e.g. box weight,  
acceleration due to gravity, etc.)
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Characteristics of a distribution

Sample mean 𝑥̅ = ∑𝑥௜/𝑁 
(central value of distribution)

Sample variance 𝑠ଶ = ∑ 𝑥௜ − 𝑥̅ 2/(𝑁 − 1) 
(width of distribution).  Cannot work for N=1

A single measurement out  of this distribution 
has an uncertainty of s. 

Result of an individual measurement: 𝑥̅ ± 𝑠 

Result of many measurements 𝑥̅ ± 𝑢 , where 

𝑢ଶ =
∑ 𝑥௜ − 𝑥̅ 2

𝑁 𝑁 − 1
=

𝑠ଶ

𝑁

More on this later

Sloppy wording, but common:  Uncertainty = error 

How to present final experimental  results → 

proper rounding

Incorrect: (1.89999679 ± 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round it to 2 most significant  
digits. If the 3rd digit is ≥ 5 then the 2nd significant number must be  
increased by 1, i.e. 0.00346 ~ 0.0035.

2. Round the measurement itself such that  
the number of decimal digits is the same  
as for the (rounded) uncertainty

Correct: (1.9000 ± 0.0035) [m]
1.9000(35) [m]
(19000 ± 35) x 10-4 [m]
19000(35) x 10-4 [m]

If the uncertainty is  
0.0035, then it does not  
make sense to keep as  
many numbers in the  
1.89999679 as possible.  
Numbers in purple are not  
significant.
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How to present final experimental  results → 

proper rounding

Important:
In Lab Reports some points will be subtracted if rounding is not done  
properly!

Which are correct and which  
are incorrect?

Probability interpretations

• “It is possible for an exp. physicist to spend a lifetime analyzing data  
without realizing that there are two different fundamental approaches to  
statistics” L. Lyons

1. Relative frequency (frequentism)
A and B are outcomes of a repeatable experiment

e.g. particle scattering, radioactive decay
2. Subjective probability (bayesian)

A, B are hypothesis (statements that are true or false)

answers more directly the question we are interested in, but
additional  dependence on “prior belief” (e.g. 30% chance of 
rain tomorrow)

𝑃(𝐴) = lim
ே→ஶ

𝑡𝑖𝑚𝑒𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 𝐴

𝑁

Most common in Experimental  
Physics (this course!)

P (A) = degree of belief tha t  A is true
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Probability distribution functions,  
expectation values and moments

Multiple measurements: distribution

Continuous line is a known function, so 
called  Probability Density Function (PDF)

For 𝑁 → ∞ the histogram approaches the PDF

Many PDFs exist , but a large number of 
problem in physics are described by a  small 
number of theoretical distributions

Binomial, Poisson, Gaussian PDFs - most common in experimental
physics.  See Appendix 3 and 4 of the textbook (L. Lyons)
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Poisson distribution

Typical for counting experiments, for 
example nuclear decay rate 
measurement.  For example, we record 
the number of clicks of a GM counter for 
60 seconds and repeat that 
measurement many times.  The 
probability distribution will be 

𝑃 𝑘 =
𝜆௞

𝑘!
𝑒ିఒ

Here l is the expected number of counts, and k is the actual measured number. The 

average of the measured k values, 𝑘ത =
∑௞೔

ே
 is our best guess for the value of l. The

variance is sଶ = 𝑘തଶ. Accordingly, the result of a measurement should be reported as

𝑘ത ± 𝑘ത

Measuring for  longer time means larger 𝑘ത .  For 𝑘ത → ∞ the distribution approaches a 
Gaussian centered around 𝜆 and the variance is 𝜎 = 𝜆.  

For the rest of the discussion we will focus on the Gaussian PDF. 

The Gaussian Distribution

The Gaussian (also called “normal”) PDF also plays a central role in all of
statistics, and thus in science. Even in cases where its application is not
strictly correct, the Gaussian often provides a good approximation to the
true PDF. It is defined as:

Described by two parameters: μ, σ
For large N, 𝑥̅ → 𝜇 and 𝑠 → 𝜎

Expectation value (mean): E[x] = μ
Variance: V[x] = σ2

Standard deviation (“error”): σ
Relative error: σ/ μ

𝑃 𝑥 = 𝑦 =
1

2𝜋𝜎
𝑒

ି
௫ିఓ మ

ଶఙమ
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Why is Gaussian so important? 
Central limit theorem:  Consider any pdf.  Repeat measurements n times. Take average.  For n
infty the average will follow Gaussian distribution. 

Example: throwing a single dice, then x={1,…,6} and P(x)=1/6  The pdf is uniform.  

Throw n dice and calculate the average score.  Repeat that N times and make the 
histogram.  In the limit of n, N goes to infinity the average will follow a Gaussian 
distribution. 

Works for any pdf.  For example, a voltmeter
reading randomly with this distribution: Average of 5 measurements:

http://solidstate.physics.sunysb.edu/teaching/2020_fall/phy251/labs/statmeth/random.xls
http://solidstate.physics.sunysb.edu/teaching/2020_fall/phy251/labs/statmeth/random5.xls

Characteristics of Probability  Functions
The area under the Gaussian curve between integral intervals of σ is 
an  important practical quantity
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Expectation Values, Distribution Moments

These can be defined mathematically without specifying P(x)

Expectation value of x:

More general: The r-th moment of x around x0 is:
𝐸 (𝑥 − 𝑥଴) =  ∫ 𝑥 − 𝑥଴

௥  𝑃 𝑥 𝑑𝑥

1st moment, if x0=0

𝐸 𝑥 =  𝑥ത = ∫ 𝑥 𝑃 𝑥 𝑑𝑥

2nd moment

𝑀𝑒𝑎𝑛 = ∫ 𝑥 𝑃 𝑥 𝑑𝑥

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∫ 𝑥 ଶ 𝑃 𝑥 𝑑𝑥

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Expectation Values, Distribution Moments

For a Gaussian distribution 

𝑀𝑒𝑎𝑛 = 𝜇

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎 ଶ

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 

𝑃 𝑥 = 𝑦 =
1

2𝜋𝜎
𝑒

ି
௫ିఓ మ

ଶఙమ
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Characteristics of the  

distribution

• Sample mean x
→ provides an estimate of the true value μ

• Sample variance s2

→ estimate of the variance σ2

Notice:
s = uncertainty on a single measurement
u = uncertainty on the mean

One entry (x) in this  
histogram means one  

measurement

Example
• In an experiment consisting of 10 independent  

measurements, we measured the speed of  
Earth vE in its revolution around the Sun and got  
the following results:

Questions:
What is the best estimate (and its uncertainty) for vE ?  
What is a single measurement uncertainty on vE?

29.9

29.7
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More than one variable – error propagation

Want to evaluate a quantity c, that depends on two variables, a and b in a 
very simple way:  a = b - c.  Assume a and b follow Gaussian PDF with σb 

and σc .  What is the standard deviation (error) of a?

Two situations:  The errors in a and b are correlated or uncorrelated. Plot the 
deviation from the average value  for each measurement:

The calculation of the error of a is very different in the two cases.   
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More than one variable – error propagation

Correlated errors

When b is off, c is also off in the same direction.  Systematic error. 
σa = σb + σc

Uncorrelated errors

When b is off c may be off in the same direction, or in the opposite direction.  Truly 
random error. 
σa

2 = σb
2 + σc

2

See book for proof. 

Adding uncorrelated errors – general case

We calculate f that depends on measured parameters x1, x2 …. For any 
given measurement the deviation from the mean is x1 , x2 , ….

If all x is zero except for xi , the deviation from the mean value of f is 

𝛿𝑓 =
డ௙

డ௫೔
𝛿𝑥௜.  The typical value of 𝛿𝑥௜ is 𝜎௜, so the contribution to the error 

of f is 𝜎௙ =
డ௙

డ௫೔
𝜎௜

In the spirit of previous discussions, if the errors are uncorrelated, we 
obtain the error of f by

𝜎௙
ଶ = ∑

𝜕𝑓

𝜕𝑥௜

ଶ

𝜎௜
ଶ

Works for any function, small errors only. 
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Combining different experiments

We do several measurements to determine 
the same quantity a.  Each measurement 
has its own error and they may be different 
from each other.  What is the best way to 
calculate the average? What is the error of 
the average? 

Special case:  all 𝜎௜ = 𝜎଴ are equal, there 
are N measurements. 

𝜎 = 𝜎଴/ 𝑁

𝑎ത =
∑ ௔೔/ఙ೔

మ

∑ ଵ/ఙ೔
మ

1

𝜎ଶ
= ෍

1

𝜎௜
ଶ

Measured Proton mass 

Least squares (c2) fit

Quantity y depends on x.  For example, 𝑦 = 𝑎𝑥 + 𝑏. We set the value of x
to xi (with no error) and measure the value yi

obs and uncertainty si, and 
repeat this several times.  How can we determine the parameters a and b?  
What is their error?

First, for each xi, calculate from the formula the corresponding yi
th.  

Calculate 𝜒ଶ = 𝑆 = ∑
௬೔

೟೓ ௔,௕ ି௬೔
೚್ೞ

ఙ೔

ଶ

Change the parameters a an b until this quantity reaches a minimum value. 

Works for any function!  Works for any number of parameters.  We need 
(much) more measurements than the number of parameters we want to 
determine.   
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Least squares (c2) fit

Useful to:
• Fit (determine) parameters of a function

• Determine the parameters (+ uncertainties) of a function that fits the  
data

• Example: I measure the distance a car has moved at various different times, and I want to determine  
its velocity v = distance / time (the function assumes the car is traveling at constant speed)

• Hypothesis testing
• Determine how compatible the data is with being described by a

certain  function
• Example (following from above): I want to understand how compatible my data is with the hypothesis  

I made that the motion is happening at constant speed.

c2 >>1 means that there is systematic deviation from the data.  For example you do 
a linear fit, but the actual dependence is quadratic.  

Fitting straight lines is special (simple)

We do not need to go through a time-consuming minimization process.  
There is an algebraic solution.  Take

To calculate the intercept A of the best fit line

where

and 

The uncertainties are 

Implemented here

https://www.ic.sunysb.edu/class/phy141md/doku.php?id=phy131studio:labs:plottingtool
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An example (II)
• First plot the data on a two-dimensional x y graph (y=f(x)):

Each data point yi=fi has its  
error band σi.

f (x)

An example (III)
• Now fit a straight line to the data (y=ax+b), determine a and b:

Fitted line

bf (x)
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An example (IV)
• Now fit a straight line to the data (y=ax+b), determine a and b:

Fitted parameters

b
Computer programs  
often do not round  
correctly. Please do in 
lab reports!

2 sign. digits:

a = 4.23 ± 0.21b 
= 0.88 0.45

1 sign. digit:
a = 4.2 ± 0.2
b = 0.9 ± 0.5

f (x)

An example (V)
• Now fit a straight line to the data (y=ax+b), determine a and b:

χ2 and ndf value

b
• ndf (number of  

degrees of freedom)  
is the number of  
data points minus  
the number of fitted  
parameters

• χ2 is the value of S  
at minimum

f (x)
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Another Example: Measure “g”

In this experiment we want to measure the acceleration 
due to gravity (or our hypothesis for the law governing  
the change of velocity per time)

We therefore need to know the time it takes an object 
to  travel a known distance under the influence of
gravity.

Our experiment will consist of dropping an object from  
a specific height and recording the time from release  
until it hits the ground

Setup of the Experiment

• You will drop a massive object in a 10 meter long  
vacuum tube (neglect air resistance)

• You precisely know the position of the markers (no  
uncertainty in the position)

• You will measure the time from release to when the  
object passes each successive meter mark

• You measure time with a stopwatch and therefore,  
this measurement has uncertainty

• Each time measurement has the same uncertainty
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Recorded Data

distance is a quadratic  
function of time!

g = 9.81 m/s2

This is a 1 parameter estimation problem

We have to calculate an estimate of g 
from our experimental data

39

40



1/5/2022

21

Remember:

In our experiment  we actually 
measure time as  function of 
distance! We have to invert

To get

g=9.81 m/s2

Assuming we know the value of g;  
this is what we expect. 

𝑡(ℎ) =
2ℎ

𝑔

Let’s turn on uncertainty

st=0.05s

measured times ti are  
now random variables

Actual measurement in  
experiment with uncertainty

We’ll use the data set shown on  
the left, in Excel
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Need column for  
uncertainty.

Two methods:
-Create whole column of  
identical values
-Refer to fixed box, with  
the one value 0.05

We’ll do the former, for  
now

you know how to do a  
“straight line fit”. Good!

But time is a non-linear  
function of distance.

Make the problem linear 
using logarithms and algebra!

ln(ab) ln(a) ln(b)
ln(ab ) bln(a)

𝑡(ℎ) =
2ℎ

𝑔

ln 𝑡 =
1

2
ln ℎ +

1

2
ln

2

𝑔
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Why can this be  
viewed as linear?

We can find g from the offset 
b of  the straight line

y  ln(t)

y axb
and identify

x  ln(h)

ln 𝑡 =
1

2
ln ℎ +

1

2
ln

2

𝑔

𝑏 =
1

2
ln

2

𝑔
𝑔 = 2 exp (−2𝑏) 

𝑎 =
ଵ

ଶ

compare to

y axb
Now compute:

x  ln(s)

y  ln(t)

 s  0  s x  0

ln 𝑡 =
1

2
ln ℎ +

1

2
ln

2

𝑔
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Need to find uncertainties  
on

from error propagation

i iy  ln(t )

s yi
 yi

ti

s ti

s t
iti

https://www.ic.sunysb.edu/class/phy141md/doku.php?id=phy131studio:labs:plottingtool



This is the case when we only fit one parameter b:

y axb

Recall:

Now we’re just doing  
linear analysis on y, x,  
with a, and b

But a is fixed to be ½!

ln 𝑡 =
1

2
ln ℎ +

1

2
ln

2

𝑔
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Compute this in parts:
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Q: Is this value consistent with 9.81m/s2

Calculate uncertainty on g  easy! (error propagation)

s
b

 g s
g b

s g  4exp2bs b
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