
PHY 300 Lab 7 Fall 2017

Lab 7: Fabry-Perot Interferometer

1 Introduction
The Fabry-Perot interferometer is fundamentally different from a Michelson because it exploits
multiple reflections of a single beam between two parallel mirrors, rather than two beams that travel
different paths (see Fig. 1). It consists of two parallel mirrors, one of which may be movable, with
light perhaps incident at a small angle θ. Some light is transmitted by the first mirror, reflected
back by the second one, and then undergoes additional reflections. It is also an instrument of
extraordinary sensitivity, and its operation depends on the relative phase of the light beams that
have undergone different numbers of reflections between the mirrors.

Laser

Fixed        Movable
mirror         mirror

Lens
Viewing
Screen

Figure 1: Schematic view of the Fabry-Perot
Interferometer.

2 How it Works
The accumulated phase difference δ on each round trip between two mirrors of separation L is
given by δ = (2π)(2L cos θ/λ).

Question 1: This result is NOT simple - show geometrically how to find it!.

We sum the various contributions transmitted through the second mirror from the multiple
reflections to the electric field ET , taking this phase difference into account. We suppose the
mirrors have reflectance r and transmittance t, and we find the sum

ET = E0t
2 + E0t

2r2eiδ + E0t
2r42e2iδ + ... (1)

where E0 is the electric field of the incident light. This is a geometric series whose sum is

ET =
E0t

2

1− r2eiδ
(2)

and so the transmitted intensity, proportional to |E|2 is

IT = I0
T 2

|1−Rei∆|2
(3)

where T ≡ tt∗, R ≡ rr∗, and ∆ ≡ δ + δr. Note that T + R = 1. The reason for the r∗, etc.
expressions is that there may be a phase shift δr upon reflection, so r may be complex. We can
readily evaluate the denominator and find

IT = I0
T 2

1−R2

1

1 + F sin2 (∆/2)
(4)
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where F ≡ 4R/(1− R)2 is called the finesse of the interferometer. Clearly for the resonant case,
sin ∆ = 0⇒ cavity length is an integer multiple of λ/2 and normal incidence, the transmission is
100%, independent of the value of r. For a graph of IT see page 89 of Fowles.

Question 2: Derive Eq. 4.

This is a most amazing result. If we shine a beam of light on a 99% reflecting mirror, 1% goes
through and the other 99% is reflected. Yet if we place a second mirror behind the first one, where
there is only 1% of the light present, somehow 100% of the light appears.

Question 3: Can you explain this??? How can energy be conserved if the first mirror reflects
99% of the light and yet 100% is transmitted??

The ratio

IT,max − IT,min
I
T,min

=
1/(1 + 0)− 1/(1 + F )

1/(1 + F )
=

1− 1/(1 + F )

1/(1 + F )
= 1 + F − 1 = F (5)

tells us that the contrast between max and min is F . Since we can get F as high as 106 we can
make really high contrast fringes. At the half-max intensity point where ∆ = ∆c, we find 1/2 =
1/(1 + F sin2(∆/2)) so ∆c = 2/

√
F since ∆c � 1 and we make the small angle approximation

for sin ∆c. Thus the full width at half max (FWHM) is 4/
√
F .

3 Experiment
Clearly the way to scan this interferometer to see the variations of transmitted intensity is to move
one of the mirrors with respect to the other. But it’s very hard indeed to do this and keep them
parallel, so instead we’ll use a diverging light beam and observe fringes caused by the variation of
θ.

The setup will be similar to that of the Michelson interferometer setup, but there will be no
beam-splitter. Position the stationary mirror so that its face is parallel to the movable mirror and
just a few millimeters or so away from it. Mount the viewing screen behind the movable mirror.
Adjust the stationary mirror until you get just one spot on the screen. Now mount the 18 mm
lens on a holder about 6 cm from the stationary mirror to produce a diverging beam and thus a
continuum of values of θ. You should see clear fringes on the screen. Find the center of the fringe
pattern. Project the fringes on a screen far away.

Measure the angular sizes of a series of fringes. The theoretical relationship between the order
of the fringe, the wavelength of the light, the angular displacement of the fringe, and the distance
between the mirrors can be found from the derivation above. Measure the FWHM of the fringes
and compare with 4/

√
F (find F by measuring the reflection coefficient, or more easily, the trans-

mission coefficient) of the mirrors. Discuss the sources of error in this method.
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