
PHY 300 Lab 4 Fall 2017

Lab 4: Transmission Line

1 Introduction
In this experiment we will study the properties of a wave propagating in a periodic medium. Usu-
ally this takes the form of an array of masses and springs of the kind whose normal modes we have
studied. However, the relative phases of the oscillations are important for this experiment, and
phase is a bit difficult to measure with mechanical oscillators. Therefore we will use an electrical
analog.

We will use a combination of inductors and capacitors, and will begin the discussion with a
review of the time-dependent behavior of the voltages and currents. This will be extended from
the simple case of a single LC circuit to a coupled array of them. It is called a “transmission line”
because real electrical transmission lines have both capacitance and inductance. The capacitance
can arise from the shield of a coaxial cable or from the ground of a power transmission line, and
the inductance can arise from the geometry of the current-carrying wires.

2 Theory
Figure 1 shows a resonant LC circuit that can be analyzed simply using Kirchoff’s loop law. This
law is nothing special - it’s simply a statement of conservation of electrical energy for the case of
a closed path, and is simply written as

∑
i Vi = 0. It means that the sum of the voltages around any

closed path is zero, and of course, this is required because transporting a charge q around a closed
path shouldn’t change its energy, and the energy change for each step of voltage ∆Vi is simply
∆Ei = q∆Vi.
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Figure 1: This is the simplest possible LC circuit. An oscillation can be
started by putting some charge q on the capacitor. It will flow off the capac-
itor, and establish a magnetic field in the inductor. Once q decreases to zero,
the current will be maintained by the collapsing field of the inductor until
there is −q on the capacitor, and then the cycle reverses. It’s the same as a
swinging pendulum or mass on a spring. In this case the current provides
the inertia and the capacitor corresponds to gravity or the spring tension.

The voltage across a capacitor C carrying charge q is V = q/C, and the voltage across an
inductor carrying a steady current i is zero. But if the current is time-dependent, then the voltage
across an inductor L is V = L(di/dt). Thus for the loop shown in Fig. 1 we use Kirchoff’s law
to find L(d2q/dt2) + q/C = 0 since i ≡ (dq/dt). Except for the different names of the variables,
this equation is identical to that of the harmonic oscillator we have studied in detail, and so we find
q = q0<[ei(ω0t+φ)] where ω0 ≡ 1/

√
LC as one of the many possible solutions. Remember that

<[z] means the real part of z, and q is a real quantity.

Next we consider the arrangement of Fig. 2. We look at the loop around each unit, starting
from the ground, up through one capacitor, through an inductor, and then down through the next
capacitor. When the current i flowing in an inductor reaches the junction, some of it flows on to the
capacitor and some flows through the next inductor. We can write Kirchoff’s loop law,

∑
i Vi = 0,
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for the nth LC loop as

qn−1

C
− Ldin−1

dt
− qn
C

= 0 and for the next loop
qn
C
− Ldin

dt
− qn+1

C
= 0. (1)
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Figure 2: Schematic diagram of a
three-unit LC transmission line. Be-
cause the capacitors and inductors are
discrete instead of the continuous ca-
pacitance and inductance of a real
transmision line, this is sometimes
called a “lumped constant” transmis-
sion line. We’ll avoid the term
here because it’s awkward, but you’re
quite likely to see it again.

We subtract the two equations of Eq. 1 from one another, multiply the result by C, and find
qn−1 − 2qn + qn+1 = LC(d/dt)(in−1 − in). Now the current divides at the junction so in−1 =
in + C(dVn/dt) because the current onto the nth capacitor is simply dqn/dt = C(dVn/dt). So we
use this to replace (in−1 − in) with C(dVn/dt) and find

qn−1 − 2qn + qn+1 = LC
d2qn
dt2

=
1

ω2
0

d2qn
dt2

. (2)

Equation 2 is yet another differential equation that we have no idea how to solve. So we try
a solution similar to those we have tried before, namely qn = <[q0e

i(ωt+φn)]. We really can’t tell
anything about qn−1 or qn+1 from this, but we might expect those to oscillate at the same frequency
ω, but to have a different phase, somewhat like the multiple masses on the air track or the loops of
a slinky.

Now we make a really daring insight. We suppose that the charge oscillating in each LC loop
is the same as in any other loop, except for the different phase, and we also guess that the phase
difference between any pair of adjacent loops is the same as the phase difference between any other
adjacent pair of loops. That is, we’ll assume that φn− φn−1 is the same as φn+1− φn, and call this
simply φ. Then we go ahead and substitute our trial solution into Eq. 2, multiply both sides by
e−iωt/q0, and find

eiφn−1+eiφn+1−2eiφn = −
[
ω

ω0

]2
eiφn , and φ = φn−φn−1 = φn+1−φn yields eiφ+e−iφ−2 = −

[
ω

ω0

]2
.

(3)
The left side of the last relation in Eq. 3 is easily handled because eiφ+e−iφ−2 = [eiφ/2−e−iφ/2]2 =
[2i sin (φ/2)]2. So we get [2i sin (φ/2)]2 = −(ω/ω0)

2, and then taking the square root of both sides
gives 2 sin (φ/2) = ω/ω0 or ω = (2ω0) sin (φ/2).

Question 1: Show that eiφ + e−iφ − 2 = −[2 sin (φ/2)]2

Thus our result is consistent with our contention at the beginning of this calculation. We find
an acceptable solution is that the oscillations in all the loops are the same except for the phase
shifts. Furthermore, after the phase shifts have accumulated a total of 2π they repeat, and the
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characteristic number of LC units for this accumulation is defined to be N . Then we can say that
each oscillator’s phase shift is φ = 2π/N so that φn = 2πn/N . If the line were a series of masses
connected by springs with a their separation, or a crystal with lattice constant a, then λ ≡ Na
would be a characteristic repeat length.

Then the equation above for ω gives

ω = (2ω0) sin (π/N) = (2ω0) sin (φ/2). (4)

Wave propagation in periodic structures is most com-
monly studied in crystals where the lattice spacing is a
and φ ≡ ka so that sin (π/N) = sin (ka/2). The we
find k ≡ 2π/λ = 2π/aN , the familiar definition of the
wave vector. Equation 4, called a dispersion relation,
is one of the most important equations in the theory of
vibrations and waves (see plot in Fig. 3). It relates ω
and k in an intimate way for wave propagation in pe-
riodic structures. It limits the highest frequency of any
wave that can propagate to be ω = 2ω0 since sin (ka/2)
can never exceed unity. This maximum value 2ω0 is
called the “cutoff frequency”. In the limiting case where
(π/N) = ka/2� 1, we have sin (ka/2) ≈ ka/2. Then
we find ω = ω0ka so a plot of ω vs k is a straight
line of slope ω0a. Equation 4 governs propagation of
sound waves in crystals and quantum mechanical waves
of electrons in all materials. It is worthy of your careful
inspection and study.
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Fig. 3: This is a plot of Eq. 4 for
ω0 = 50 rad/s. Note that for higher
values of ω the ka-value is larger than
it would be for a straight line (dashed
lines), indicating a λ-value that is too
small.

3 Procedure
The primary purpose of this experiment is to demonstrate the main properties of wave propagation
in a periodic structure. We will see how the dispersion equation (4) above works in the regions
N � 1 and the more interesting region where N ∼ 2 so that approximating the sine function by
its argument is clearly a poor choice.

As stated above, the electrical analog enables easier measurements, and the systems that have
been constructed for this experiment consist of 12 LC units. Since approximating 12 by infinity is
indeed a very poor approximation, we need to deal with the question of what happens at the end of
the line. There are several ways to proceed.

Suppose we consider that the transmission line in Fig. 2 is not infinite, but is indeed very long.
A disturbance started at one end propagates along as if it were infinite. But after the disturbance
reaches the end, the charge flowing through the last inductor cannot divide between a capacitor and
the next inductor, because there IS no next inductor. Instead it accumulates on the last capacitor,
and eventually is forced back into the last inductor. Thus the disturbance is reflected back toward
the beginning of the transmission line.
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4 Termination in Characteristic Impedance
We will start by providing a place for that charge to flow so that it doesn’t go back through that
last inductor. We’ll place a resistor across the end of the line to ground, and choose it large enough
so we don’t short out the last capacitor, but small enough so the charge can drain off that capacitor
quickly. The correct choice to give the right time constant for this circuit is Z0 =

√
L/C which

has the dimensions of Ohms and is called the characteristic impedance. A signal incident on a
finite transmission line terminated in its characteristic impedance Z0 will not be reflected, but will
be completely absorbed and dissipated as heat in the resistor. Such a line is indistinguishable from
one of infinite length, and thus justifies the use of Eq. 4.

Question 2: Prove that
√
L/C has the dimensions of ohms.

We begin by injecting a sine wave of very low frequency f = ω/2π so that ω/ω0 � 1 in Eq. 4
and we can approximate the sine function by its argument. If this were a crystal of lattice spacing
a we’d find the phase velocity of the wave ω/k = aω0 and this is the same as the group velocity
dω/dk = aω0. We can measure this speed by measuring the phase change at each of the 12 units,
and plotting this phase vs. unit number. If you can determine the number of units required to
undergo a phase shift of a full 2π, then this constitutes a “wavelength” in a units. Since you now
know both ω and k = 2π/λ, you can calculate the phase velocity.

Question 3: Show that the phase velocity is indeed ω/k = aω0 when we can approximate the
sine function by its argument in Eq. 4.

Now repeat this measurement for several increasing
values of ω and plot your results. As ω begins to approach
the region of ω0, the sine term in Eq. 4 is approaching 1/2,
the low-frequency approximation is no longer valid, and
the phase and group velocities are no longer the same.
This will be quite apparent from the simple measure of
the phase shift even at the first few LC units.

You will find these phase shifts to be larger than at low
frequencies simply because the subsequent LC oscillators
can’t follow the rapid voltage and current changes and so
they lag behind a bit more. Then the “wavelength” will
correspond to a smaller number of a units. Thus λ will
be smaller, k will be larger, and the phase velocity given
by ω/k = aω0 sin (φ/2)/(φ/2) will be smaller. Note that
this phase velocity has dimensions “(LC units)/second”
and since “LC units” is just a number without dimension,
the velocity has dimensions 1/time. If you plot your mea-
sured phase velocity vs ω it should look like Fig. 4 which
is simply taken from Eq. 4.
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Fig. 4: This is plot of phase velocity

given by ω/k, and is taken directly
from the dispersion equation, Eq. 4.
It is very nearly constant at small
k-values (note the vertical scale).
It changes by only 10% even for
ka/2 = π/4 (dashed lines).

One of the parameters you can extract from your measurement is ω0 = 1/
√
LC. Compare this

with the stated values of L and C and comment on the differences. Note that 2ω0 is the cutoff
frequency. Calculate it in Hz.
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5 Open Circuit and Short Circuit at the End
Instead of a resistor at the end, if we just leave the circuit as it appears in Fig. 2 we have what
is called an “open circuit termination.” As discussed above, the wave will be reflected, and it
will interfere with the incident wave that left the source at a later time. We would have the
superposition of counterpropagating waves of the same frequency that we can write as Y =
Y0[cos (ωt− kx) + cos (ωt+ kx)] which becomes Y = Y0 cos (ωt) cos (kx). This interference
is constructive if the length of the transmission line corresponds to a quarter wavelength, or in
other words, the wavelength is 48 LC units.

Question 4: Show that Y = Y0[cos (ωt− kx) + cos (ωt+ kx)] = Y0 cos (ωt) cos (kx).

You can easily see this resonance by varying the frequency slowly from a very low value and
measuring the voltage at the end unit. This will be a maximum when the desired condition is
achieved. If you continue to raise the frequency, the end voltage will decrease to some minimum
value, and then rise again. There will be another maximum when the total length of the line is
(3/4)λ or λ = 16 units. This behavior will repeat again a 5/4, etc., but as λ begins to approach a
small number of units, say one or two, its value will no longer be linear with applied frequency.

This open circuit “standing wave” method is simply another way of finding k = 2π/λ for
various values of ω, and you should make several measurements to determine the dispersion curve
again. Be sure to include error bars, and compare your results with those of the first method using
the characteristic impedance to terminate the line.

Still another way to find the dispersion curve is to set the resistor at the end of the transmission
line to zero ohms, and this is called a “short circuit termination.” Also in this case the wave will
be reflected because the voltage at the end of the last inductor is pinned to be zero. As above, the
reflected wave will interfere with the incident wave that left the source at a later time. Again we
would have a standing wave, except that this time the interference is constructive if the length of
the transmission line corresponds to a half wavelength, a full wavelength, 3/2 wavelength, etc. You
can easily see this resonance and map out the standing wave of period λ/2.

Question 5: In the two cases of open circuit termination and short circuit termination there
are standing waves produced by the reflection. Yet the number of wavelengths (or fractions of
wavelengths) along the transmission line at resonance is different. Discuss the two cases, and
explain the difference.

6 Hints and Kinks Department
There are several places where you can get tripped up in this experiment. The most significant of
these is failure to know how to use the dual trace oscilloscopes, since these are the instruments that
will be used for all your measurements. You should be sure that the gain settings and sweep rates
correspond to the input signals. Start by connecting the oscillator to channel 1 of the scope only,
set the trigger select to channel 1, and then adjust the trigger level until you see a trace. Adjust the
scope sensitivity until the sine wave is about half the height of the screen, and adjust the sweep rate
so that you see two or three waves across it. Then connect the trigger output from the oscillator to
the trigger input of the scope with a second cable, set the trigger select to external, and now adjust
the trigger level to get a trace. The trace should be the same as when the scope was triggered on
channel 1. Now add a second connection from the output of the oscillator, this one to the counter.
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It should tell you the frequency of the oscillator, but it won’t necessarily correspond to its dial
setting. Now add a third connection from the output of the oscillator, this one to the input end of
your transmission line. You may have to readjust the gain on channel 1 to see the same amplitude
of the wave.

With this you are ready to take measurements. Connect a probe to channel 2 of the scope and
touch its other end to the output of the oscillator. Adjust the gain of channel 2 so that the wave
is about the same amplitude as that in channel 1. Now move the probe to the further end of the
transmission and see if the waveforms are phase shifted relative to one another. If not, try raising
the frequency up to the domain of ω0. WARNING: the counter reads Hz but 1/

√
LC is in radians/s

so you have to multiply the counter reading by 2π to compare it with 1/
√
LC.

Needless to say, you have to calibrate the time base of the scope carefully so that your measure-
ments have some meaning. You can do this by setting the frequency of the oscillator so that there
is an integer number of waves across the scope display, recording the frequency from the counter,
and noting how that corresponds to the time base calibration of the scope.

Comment: If we added a resistor R to each loop of the LC circuits, corresponding to the
non-zero resistance of the inductor or the leakage of the capacitor, it would act like a friction force
and the decay rate corresponding to the γ of a mechanical oscillator would be L/R or RC. In this
experiment we are interested only in the case of the ideal circuit elements.
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