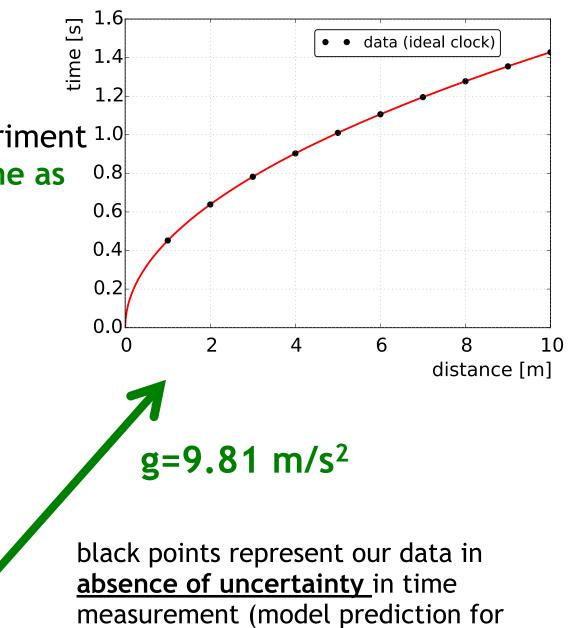

A Fictional Measurement of the Acceleration due to Earth's Gravity

Analysis walk-through, and Excel tutorial

Jonathan Pachter and Darin Mihalik PHY 252 -Spring 2018

This is a 1 parameter estimation problem

We have to calculate an estimate of g from our experimental data

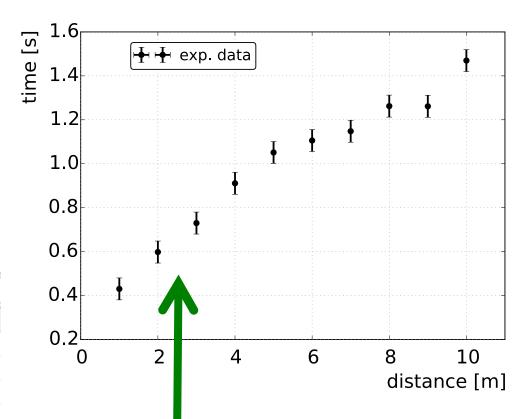

Remember:

In our hypothetical experiment ^{1.0} we actually measure time as ^{0.8} function of distance! ^{0.6}

$$\mathbf{S}(t) = \frac{1}{2}\mathbf{g}t^2$$

Solving for t gives:

t(S



data points)

<u>Let's turn on uncertainty</u> $\sigma_t = 0.05s$

measured times t_i are now random variables

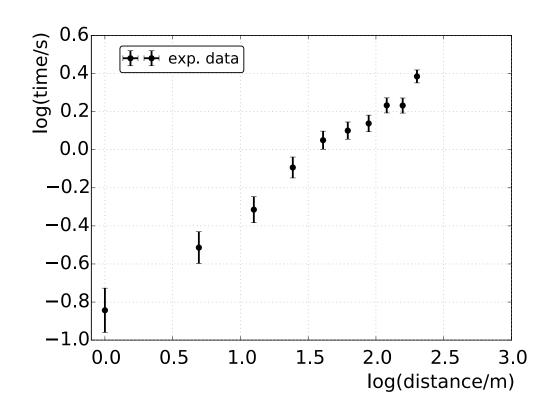
	B11	• (*	f_x	1.47
	А	В	С	D
1	distance (m)	time (s)		
2	1	0.43		
3	2	0.6		
4	3	0.73		
5	4	0.91		
6	5	1.05		
7	6	1.1		
8	7	1.15		
9	8	1.26		
10	9	1.26		
11	10	1.47		
12				
13				
14				

Actual measurement in experiment with uncertainty

We'll use the data set shown on the left, in Excel

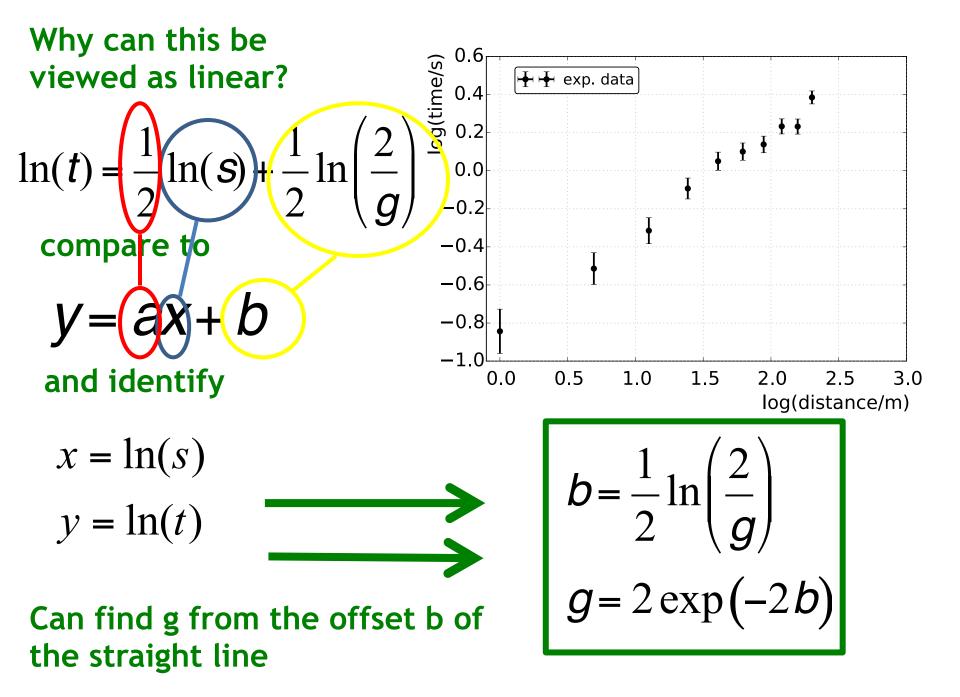
Need column for uncertainty..

Two methods:


- Create whole column of identical values
- Refer to fixed box, with the one value 0.05

We'll do the former, for now

	C2	- (=	f _x	0.05	
	А	В	С	D	E
1	distance (m)	time (s)			
2	1	0.43	0.05		
3	2	0.6			
4	3	0.73			
5	4	0.91			
6	5	1.05			
7	6	1.1			
8	7	1.15			
9	8	1.26			
10	9	1.26			
11	10	1.47			
12				0.05	
13					
14					
15					
16					


you know how to do a "straight line fit". Good!

But time is a non-linear function of distance.

Make the problem <u>linear</u> using logarithms and algebra! $\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$

 $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a^b) = b\ln(a)$

Why can this be viewed as linear?

$$\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$$

compare to

$$y = ax + b$$

and identify

$$x = \ln(s)$$
$$y = \ln(t)$$

	T.TEST \checkmark (\checkmark \checkmark f_{\ast} =LN(\$A2)									
	А	В	С	D	E	F				
1	distance (m)	time (s)			log(distan	ce/m)				
2	1	0.43	0.05		=LN(\$A2)					
3	2	0.6	0.05							
4	3	0.73	0.05							
5	4	0.91	0.05							
6	5	1.05	0.05							
7	6	1.1	0.05							
8	7	1.15	0.05							
9	8	1.26	0.05							
10	9	1.26	0.05							
11	10	1.47	0.05							
12										
13										

So we need to compute new columns for x and y, so that we can do linear fit analysis!

Can find g from the offset b of the straight line

$$\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$$

compare to

$$y = ax + b$$

Now compute:

$$x = \ln(s)$$
$$y = \ln(t)$$

	E2	- (0	f_{x}	=LN(\$A2	2)	
	А	В	С	D	E	F
1	distance (m)	time (s)			log(distan	ce/m)
2	1	0.43	0.05		0	
3	2	0.6	0.05		0.693147	
4	3	0.73	0.05		1.098612	
5	4	0.91	0.05		1.386294	
6	5	1.05	0.05		1.609438	
7	6	1.1	0.05		1.791759	
8	7	1.15	0.05		1.94591	
9	8	1.26	0.05		2.079442	
10	9	1.26	0.05		2.197225	
11	10	1.47	0.05		2.302585	
12						
13						

$$\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$$

compare to

$$y = ax + b$$

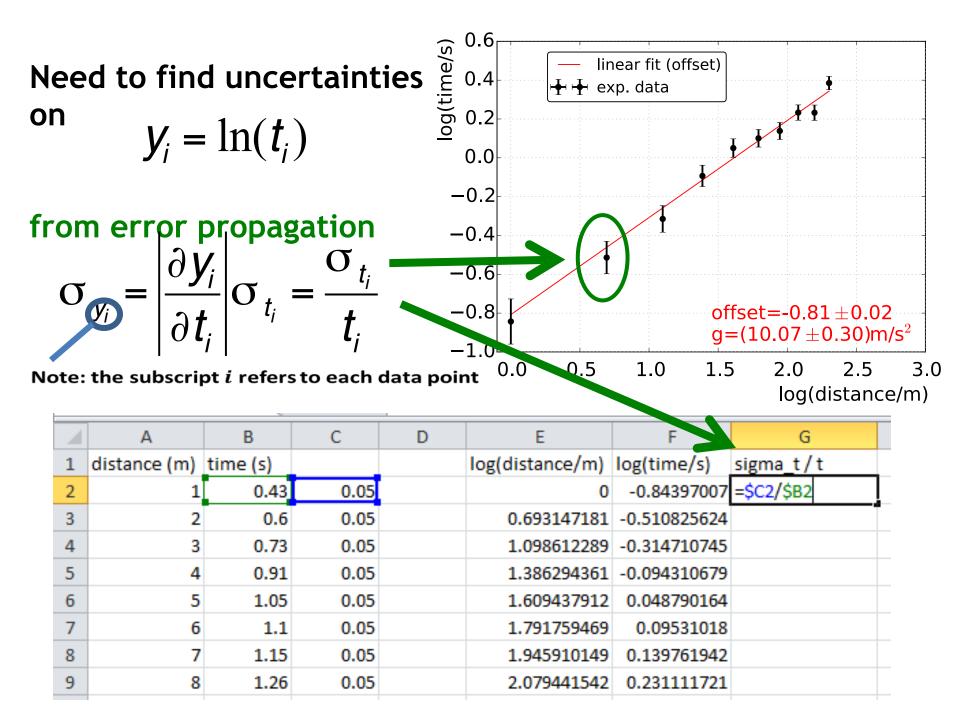
Now compute:

$$x = \ln(s)$$
$$y = \ln(t)$$

	F2	• (*	f_x	=LN(\$B2	2)		
	А	В	С	D	E	F	(
1	distance (m)	time (s)			log(distance/m)	log(time/s	5)
2	1	0.43	0.05		0	-0.84397	
3	2	0.6	0.05		0.693147181	-0.51083	
4	3	0.73	0.05		1.098612289	-0.31471	
5	4	0.91	0.05		1.386294361	-0.09431	
6	5	1.05	0.05		1.609437912	0.04879	
7	6	1.1	0.05		1.791759469	0.09531	
8	7	1.15	0.05		1.945910149	0.139762	
9	8	1.26	0.05		2.079441542	0.231112	
10	9	1.26	0.05		2.197224577	0.231112	
11	10	1.47	0.05		2.302585093	0.385262	
12							-
13							

$$\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$$

compare to


$$y = ax + b$$

Now compute:

$$x = \ln(s)$$
$$y = \ln(t)$$

$$\sigma_s = 0 \rightarrow \sigma_x = 0$$

	F2	- (0	f_x	=LN(\$B2	2)		
	А	В	С	D	E	F	(
1	distance (m)	time (s)			log(distance/m)	log(time/s	5)
2	1	0.43	0.05		0	-0.84397	
3	2	0.6	0.05		0.693147181	-0.51083	
4	3	0.73	0.05		1.098612289	-0.31471	
5	4	0.91	0.05		1.386294361	-0.09431	
6	5	1.05	0.05		1.609437912	0.04879	
7	6	1.1	0.05		1.791759469	0.09531	
8	7	1.15	0.05		1.945910149	0.139762	
9	8	1.26	0.05		2.079441542	0.231112	
10	9	1.26	0.05		2.197224577	0.231112	
11	10	1.47	0.05		2.302585093	0.385262	
12							
13							

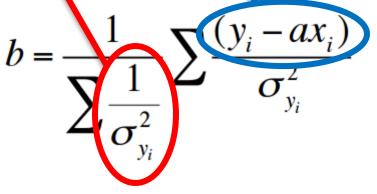
Recall:

$$\ln(t) = \frac{1}{2}\ln(s) + \frac{1}{2}\ln\left(\frac{2}{g}\right)$$

$$V = ax + b$$

Now we're just doing linear analysis on y, x, with a, and b

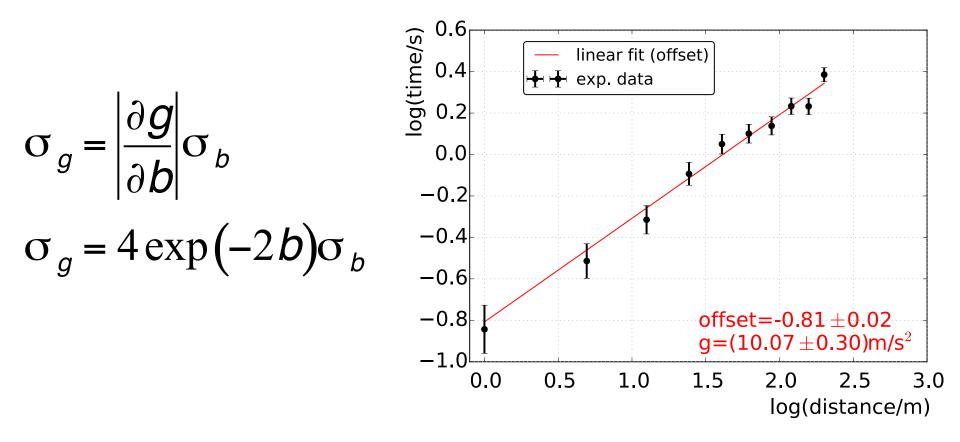
But a is fixed to be 1/2!


1

This is the case when we only fit one parameter b:

$$b = \frac{1}{\sum \frac{1}{\sigma_{y_i}^2}} \sum \frac{(y_i - ax_i)}{\sigma_{y_i}^2} \qquad \sigma_b = \sqrt{\frac{1}{\sum \frac{1}{\sigma_{y_i}^2}}}$$

	T.TEST $\checkmark (\frown \times \checkmark f_{x}) = B2-JJ3^{*}A2$										
	Α	В	С	D	E	F	G	Н	I	J	
1	х	у	sigma_y	1/sigma_y^2	(y_i-ax_i)						
2	0	-0.84397	0.11627907	73.96	= <mark>\$B2</mark> -\$J\$3*\$	A2			Fit One Pa	arameter:	
3	0.693147	-0.51083	0.08333333	1,44					a =	0.5	
4	1.098612	-0.31471	0.06849315	213.1							
5	1.386294	-0.09431	0.05494505	331.24					b =		
6	1.609438	0.04879	0.04761905	441							
7	1.791759	0.09531	0.04545455	484							
8	1.94591	0.139762	0.04347826	529							
9	2.079442	0.231112	0.03968254	635.04							
10	2.197225	0.231112	0.03968254	635.04							
11	2.302585	0.385262	0.03401361	864.36							
12											
13											


Compute this in parts:

	Gr.	Alignment	S Numb	er G		Styles		Cells	Edit		
✓ f	✓ f _x =1/SUM(D2:D11)*SUM(F2:F11)										
	D	E	F	G	Н	1	J	K	L		
Y	1/sigma_y^2	(y-ax)	(y - ax)/sigma_y^2								
7907	73.96	-0.84397007	-62.4200264			Fit One Pa	arameter:				
3333	144	-0.85739921	-123.4654868			a =	0.5				
9315	213.16	-0.86401689	-184.1738401								
4505	331.24	-0.78745786	-260.8375416			b =	=1/SUM(D	2:D11)*SUN	V(F2:F11)		
1905	441	-0.75592879	-333.3645973								
5455	484	-0.80056955	-387.4756645								
7826	529	-0.83319313	-440.7591669				• 7				
8254	635.04	-0.80860905	-513.499091			1	-(v)	$-ax_i$			
8254	635.04	-0.86750057	-550.8975605		h = -	1	$\mathbf{N} \underline{\bigcirc i}$	<u> </u>			
1361	864.36	-0.76603015	-662.1258167		υ – 、	- 1		σ^2			
								O_{y_i}			
					4	$\Delta \sigma^2$					
						v_{y_i}					

	> - A - ≣	≡∃ (= 1	<u>=</u> <u>+a</u> + \$	*.0 .00 .00 ⇒.0		nal Format ng * as Table *	Cell	Format -	Sort a
	G	Alignment	🗟 Numb	er 🗇		Styles		Cells	Editi
< 1 	sQRT(1/S	UM(D2:D11))							
0	D	E	F	G	Н	I	J	К	L
_y	1/sigma_y^2	(y-ax)	(y - ax)/sigma_y^2						
27907	73.96	-0.84397007	-62.4200264			Fit One Par	ameter:		
33333	144	-0.85739921	-123.4654868			a =	0.5	i	
49315	213.16	-0.86401689	-184.1738401						
94505	331.24	-0.78745786	-260.8375416			b =	-0.80882		
61905	441	-0.75592879	-333.3645973			sigma_b =	=SQRT(1/	SUM(D2:D	11))
45455	484	-0.80056955	-387.4756645						
47826	529	-0.83319313	-440.7591669				-		
68254	635.04	-0.80860905	-513.499091						
68254	635.04	-0.86750057	-550.8975605				1	-	
01361	864.36	-0.76603015	-662.1258167				1		
					σ	_ _		L	
					\boldsymbol{O}_{k}	, —	_ 1		
						1	Σ^{-}	$\overline{2}$	
						V	$-\sigma$		
						Y		V _i	

Q: Is this value consistent with 9.81m/s² Calculate uncertainty on $g \rightarrow easy!$ (error propagation)

