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Our conclusion, e.g.“We have made a world shattering 
discovery!” depends on the accuracy of our measurement.

Why do we do experiments?
Two types of experiments to learn about the physical world:

The numerical value of the quantity we want to measure 
is not enough

§ parameter determination
e.g. measure body temperature

§ hypothesis testing
e.g. testing whether body temperature
increased since this morning
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Experimental Data / Results 

28
One entry (x) in this histogram 

means one measurement    (e.g. one score for every student)

Histograms

e.g. quiz scores
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Continuous distribution: 
infinite number of measurements



è statistical errors (arise from the 
inherent statistical nature of the 
phenomena being observed) and/or 
instrumental errors (arise from 
instrumental imprecisions)

è in a series of repeated measure-
ments they produce slightly different 
values of the measured parameter xtrue

è may be handled by the theory of 
statistics

Types of experimental uncertainties: 
Random uncertainties

xtrue x

n

spread
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Continuous distribution 
(infinite number of measurements)



èuncertainties in the bias of the data

è in a series of repeated measure-
ments they produce results that 
systematically shifted in the same 
direction by the same amount from the 
true value of the measured parameter

è difficult to identify the possible 
sources and estimate their magnitude. 

Types of experimental uncertainties
Systematic uncertainties

xtrue x

n

shift
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èSimilar to systematic uncertainties in nature
èCan be difficult to detect

Example1: 
Writing 2.34 kHz instead of 2.43 kHz 
in your lab book. If not immediately corrected,  
will effect the precision of your result. 

Other examples: 
Misreading scales,  confusion of units, etc.

Good experimentalist makes very few, if any, 
such mistakes (we’ll not discuss it further)

Mistakes

xtrue x

n

shift
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Mistakes

The Gimli Glider Incident (1983),  from an article published in Soaring Magazine by Wade H.Nelson

A Boeing 767 aircraft (Air Canada Flight 143) ran out of fuel mid-flight in 1983. 
Reason: misunderstanding between metric and imperial units of volume.
The crew used 1.77 pounds per liter, instead of 0.8 kg per liter of kerosene.
(emergency landing in Gimli, Canada)



The Gimli Glider Incident (1983),  from an article published in Soaring Magazine by Wade H.Nelson

A Boeing 767 aircraft (Air Canada Flight 143) ran out of fuel mid-flight in 1983. 
Reason: misunderstanding between metric and imperial units of volume.
The crew used 1.77 pounds per liter, instead of 0.8 kg per liter of kerosene.
(emergency landing in Gimli, Canada)

Mistakes        



èuncertainties in the bias of the data

è in a series of repeated measure-
ments they produce results that 
systematically shifted in the same 
direction by the same amount from the 
true value of the measured parameter

è difficult to identify the possible 
sources and estimate their magnitude. 

Types of experimental uncertainties
Systematic uncertainties

xtrue x

n

shift

Ensure	apparatus	is	properly	calibrated	and	zeroed.

No	simple	rules	for	eliminating	systematic	errors:		
common	sense	+	experience!
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Most realistic situation:
Random and Systematic uncertainties

xtrue x

n

spread + shift

0.5kg

1.6kg

1kg

x  can have a meaning of any measured quantity (e.g. box weight, 
acceleration due to gravity,  etc)   



A good experimental physicist:

minimizes and realistically 
estimates the random 
errors of his/her apparatus

and 

reduces the effect of 
systematic errors to much 
smaller levels.R
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Multiple measurements: distribution

41

x
Histogram (finite number of measurements)
Total number of measurments: 
Ntot = N (bin1)+N (bin2)+ …. 
Function (infinite number of measurements)

A)  Random uncertainties dominate  i.e.
Measurement tool accuracy (systematic error) 
smaller than the bin size (device “calibrated” i.e. 
no offsets)

B)  Random uncertainties much smaller than
the measurement tool accuracy (systematic 
error) 

Ntot

0         5    x[m]  1            2            3        x m!" #
$

Here ssyst = 0.1m (<0.25m bin size)



Multiple measurements: distribution
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x m!" #
$

Histogram (finite number of measurements)
Total number of measurments: 
Ntot = N (bin1)+N (bin2)+ …. 
Function (infinite number of measurements)

C)  Random uncertainties dominate  i.e.
Measurement tool accuracy (systematic error) 
smaller than the bin size (device not “calibrated” 
i.e. there is an offset of  4m)

D)  Random uncertainties much smaller than
the measurement tool accuracy (systematic 
error) 

Ntot

5 6 7 4         9    x[m] 

Here ssyst,1 = 0.1m (<0.25m bin size)
and ssyst,2 = 4m (dominant; this is 
actually an error, should be found 
and corrected)



§ Sample mean  µ

§ Sample variance

44

One entry (x) in this histogram 
means one measurement

One measurement has an uncertainty of s
(we’ll learn how to estimate it in Lecture2)
Result of an individual measurement

Characteristic of the a distribution

𝑥 ± 𝜎

𝜎$



How to present final experimental measurement results.
Proper rounding.

Incorrect:   (1.89999679 ± 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round to 2 most significant 
numbers. If the 3rd number is  ≥ 5  then the 2nd significant number must 
be increased by 1, i.e. 0.00346 ~ 0.0035.

2. Rounding the result is now straightforward: 
Correct:   (1.9000 ± 0.0035)   [m] 

1.9000(35) [m]
(19000 ± 35) x10-4 [m]
19000 (35) x10-4 [m]

Note: if the uncertainty is 0.0035, then it does not make sense to keep as many 
numbers in the measured value as possible (e.g. as your calculator displays), since 
1.89999679 numbers marked in purple are not significant.



Rounding: 
Lab reports:  points will be subtracted if final results 
are not rounded properly 

A. (1.9 +/- 0.189) [m] 
B. (1.89999679) +/- 0.189 [m]  
C. (1.90 +/- 0.19) [m] 
D. (1.9 +/- 0.2) [m]

E. (23.24555 +/- 2.234) [m] 
F.  (23.2 +/- 2.2) [m] 
G. (23 +/- 2) [m]

H.  (0.00012378 +/- 0.00000568) [m] 
I.   (0.0001238 +/- 0.0000057) [m] 
J.   (0.000124 +/- 0.000006) [m] 
K.  (1.24 +/- 0.06)x10-4 [m] 
L.  1.24(6) x10-4 [m]

Exercises:  

Which are 
correct and which are 
incorrect?



How to present final experimental measurement results.
Proper rounding (important for PHY252)
Example
Incorrect rounding:   (1.89999679 ± 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round to 2 most significant 
numbers. If the 3rd number is  ≥ 5  then the 2nd significant number must 
be increased by 1, i.e. 0.00346 ~ 0.0035.

2. Rounding the result is now straightforward: 
Correct:   (1.9000 ± 0.0035)   [m] 

1.9000(35) [m]
(19000 ± 35) x10-4 [m]
19000 (35) x10-4 [m]

Note: if the uncertainty is 0.0035, then it does not make sense to keep as many 
numbers in the measured value as possible (e.g. as your calculator displays), since 
1.89999679 numbers marked in purple are not significant.



Rounding: 
Lab reports:  points will be subtracted if final results 
are not rounded properly 

A. (1.9 +/- 0.189) [m] 
B. (1.89999679) +/- 0.189 [m]  
C. (1.90 +/- 0.19) [m] 
D. (1.9 +/- 0.2) [m]

E. (23.24555 +/- 2.234) [m] 
F.  (23.2 +/- 2.2) [m] 
G. (23 +/- 2) [m]

H.  (0.00012378 +/- 0.00000568) [m] 
I.   (0.0001238 +/- 0.0000057) [m] 
J.   (0.000124 +/- 0.000006) [m] 
K.  (1.24 +/- 0.06)x10-4 [m] 
L.  1.24(6) x10-4 [m]

Group work:  

Which are 
correct and which are 
incorrect? Round 
properly incorrect 
ones.



http://www.mathgoodies.com/lessons/vol6/intro_probability.html

Experiment, Outcome, Event and Probability

7

The probability of an event is the measure of the chance that the 
event will occur as a result of an experiment

0 ≤ P A( ) ≤1

?



Probability Interpretations
“It	is	possible	for	an	exp.	physicist	to	spend	a	lifetime	analyzing	data	without	
realizing	that	there	are	two	different	fundamental	approaches	to	statistics.”

1. Relative frequency (frequentism)
A, B ... are outcomes of a repeatable experiment

e.g. particle scattering, radioactive decay... (most useful in HEP)

2. Subjective probability (bayesianism)
A, B, ... are hypotheses (statements that are true or false)

can provide more natural treatment of non-repeatable phenomena: 
e.g. systematic uncertainties, probability that Higgs boson exists ...

L.Lyons

G. Cowan, “Statistical Data Analysis”

12

Common in experimental 
physics (this course)



Measurement and Probability Distributions 

§ Measurement is a random process described by an abstract 
probability distribution whose parameters contain the 
information desired. 

§ The results of a measurement are then samples from this 
distribution which allow an estimate of the theoretical 
parameters. 

13

Now we’ll explain what this means …. 



Probability distribution functions,
expectation values and moments
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Multiple measurements: distribution

15

x1            2            3        x m!" #
$

Continuous line is a 
known function  
(typically Gaussian)
so called Probability 
Distribution Function 
(PDF)



Probability Distribution Functions

Distribution      Example
Gaussian Measurement error
Poisson Number of events found
c2 Goodness-of-fit

G. Cowan, “Statistical Data Analysis”

Many pdf’s, large number of problems in physics are 
described by a small number of theoretical distributions: 

16

Poisson, Gaussian PDF’s – most common in experimental physics



The Gaussian Distribution

€ 

P(x) =
1

σ 2π
e
−
x−µ( )2

2σ 2σ 2 = 0.2

σ 2 = 0.5

σ 2 =1

€ 

P(x)

x

Described by two parameters: µ, s

€ 

V[x] =σ 2
Expectation value (mean):
Variance:
Standard deviation:

€ 

E[x] = µ

€ 

σµ
s

The Gaussian (also called “normal”) pdf plays a central role in all of statistics 
and is the most ubiquitous distribution in all the sciences. Even in cases 
where its application is not strictly correct, the Gaussian often provides a 
good approximation to the true pdf’s.  It is defined as: 



Assignment (do @ home)

Using gnuplot,  plot P(x) = Gaussian functions with µ=0.1 and
a) s2 =0.2
b) s2 =0.5
c) s2 =1
parameters.

Example:



Random processes:  described by the probability density function (pdf) 
which gives the expected frequency of occurrence for each possible 
outcome (random variable x). 

Characteristics of Probability Functions

Example:
The process = throwing a single die, then x={1,…,6} and P(x)=1/6
The random variable is then said to be distributed as P(x).

Random 
variable 

PDF Integral Normalization 

Discrete P(xi):
frequency	at	each	xi

Continuous P(x): probability	of	
finding	x	in	interval	x’
to	x’+dx’ is	P(x’)dx’ € 

P(xi) =1
i
∑

€ 

P(x)∫ dx =1

= P(xi )
i
∑

€ 

P(x1 ≤ x ≤ x2)

€ 

= P(x)dx
x1

x2

∫



The area under the Gaussian bewteen integral intervals of s
- an important practical quantity

68.3%

µ-s µ+s µ-2s µ+2s
µ µ

µ-3s µ+3s
µ

95.5% 99.7%

21



The Poisson Distribution

€ 

P(n) =
µne−µ

n!

P(n)

G. Cowan, “Statistical Data Analysis”

€ 

V[n] = µ
Expectation value (mean):
Variance:
Standard deviation:

€ 

E[n] = µ

Example (important): 
In all counting experiments, for m observed events (m is “large”),  
the standard deviation (i.e. uncertainty) is

€ 

σ = µ

€ 

m

22

µ=2

µ=5

µ=10

Described by one parameters: µ



Expectation Values, Distribution Moments
For a continuous random variable x with pdf  P(x):

g here we do not define or choose what the pdf P(x) is

The r-th moment of x about x0:
§ 1st moment about x0=0 

(mean)

§ 2nd moment about x0=µ  (Variance)

€ 

µ = E[x] = x P(x) dx∫

€ 

σ2 =V[x] = E[x 2] −µ2 = E[(x −µ)2] = (x −µ)2  P(x) dx∫

€ 

σ = σ2 (Standard	deviation)

€ 

E[(x − x0)
r]

Expectation value of x:

€ 

E[x] = x P(x) dx∫

23



Multivariate distributions

§Means:

€ 

µx = E[x] = xP(x,y) dxdy∫∫
µy = E[y] = yP(x,y) dxdy∫∫

For continuous random variables x,y with pdf  P(x,y):

€ 

σx
2 = E[x 2] −µx

2 = E[(x −µx )
2] = (x −µx )

2  P(x,y) dx∫∫ dy
σy

2 = E[y 2] −µy
2 = E[(y −µy )

2] = (y −µy )
2  P(x,y) dx∫∫ dy

§ Variances:

24

Extra material (more advanced statistics/labs than PHY251/252)



Multivariate distributions, the covariance
For continuous random variables x,y with pdf  P(x,y):
§ Covariance:

€ 

cov(x, y) = E[xy] −µxµy = E[(x −µx )(y −µy )]
              = (x −µx )(y −µy ) P(x,y) dxdy∫∫

- a measure of the linear correlation between the two variables.

§ Correlation	coefficient:

€ 

ρxy =
cov(x, y)
σxσy

   ρxy ≤1

25

Extra material (more advanced statistics/labs than PHY251/252)



Extra material (more advanced statistics/labs than PHY251/252)

Assumption: students pay 
attention and participate in 
the class activities.

Positive correlation

Independent variables: no correlation 



Correlation Coefficient - Examples

G. Cowan, “Statistical Data Analysis”

28

€ 

ρxy =
cov(x, y)
σxσy

   ρxy ≤1

Extra material (more advanced statistics/labs than PHY251/252)



Sampling, sample moments 
and parameter estimation

Sampling = experimental method by which information can 
be obtained about the parameters (like mean and variance) 
of an unknown distribution.

It is important to have a “representative” and “unbiased” sample.
Do NOT reject any data just because it does not “look right”!

You must find a reason for excluding the data (and only if a 
mistake cannot be corrected)

Measurement is a random process described by an abstract probability 
distribution whose parameters contain the information desired. The 
results of a measurement are then samples from this distribution which 
allow an estimate of the theoretical parameters. 

31



Characteristic of the a distribution

s2

§ Sample mean
gestimate of true value µ

§ Sample variance
gestimate of  variance s2

x

s,σ

32

x,µ



Sample Moments
Let x1,x2,….,xn be a sample of size n from a distribution with
theoretical mean µ and variance s2 (both unknown).

x = 1
n

xi
i=1

n

∑           

§ Sample mean (µ estimator):

€ 

s2 =
1
n

xi −µ( )2    ∑

§ Sample variance (s2 estimator):

§ Sample variance on the mean:

€ 

u2 =
s2

n

xx1   xn x2….

more data help to determine the mean to higher accuracy€ 

=
1

n −1
xi − x ( )2

    ∑ = s2



Characteristic of the a distribution

s2

§ Sample mean
gestimate of true value µ

§ Sample variance
gestimate of  variance s2

s= uncertainty on a single 
measurement
u= uncertainty on the mean!  

x

34

One entry (x) in this histogram 
means one measurement



What is the best estimate (and its uncertainty) for vE?
What is a single measurement  uncertainty on vE? 

In an experiment consisting of 10 independent 
measurements, we measured the speed of Earth 
vE in its revolution around the Sun and got the 
following results: 

Example:

1. vE= 29.7  [km/s]
2. vE= 29.9  [km/s]
3. vE= 29.9  [km/s]
4. vE= 39.9  [km/s]
5. vE= 29.8  [km/s]
6. vE= 30.0  [km/s]
7. vE= 39.7  [km/s]
8. vE= 29.9  [km/s]
9. vE= 29.8  [km/s]

10. vE= 30.0  [km/s]
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€ 

x =
1
n

xi
i=n

n

∑   =

    = 1
10

 29.7 +29.9 +29.9 +29.9 +29.8 + 30.0 +29.7 +29.9 +29.8 + 30.0( )[km/s]

    = 29.853394 [km/s]        

s2 = 1
n−1

xi − x( )
2
=∑ 1
9
[ 29.7'x( )

2
+ 29.9'x( )

2
+ 29.9'x( )

2
+ 29.9'x( )

2
+ 29.8'x( )

2
+

+++++++++++++++++++++++++++++++++++++++++ 30.0'x( )
2
+ 29.7'x( )

2
+ 29.9'x( )

2
+ 29.8'x( )

2
+ 30.0'x( )

2
]+[km2/s2]

+++++=0.009456+[km2/s2]

€ 

u2 =
s2

n
=

0.009456
10

[km2/s2] = 0.0009456 [km2/s2]

u = 0.030751 [km/s]≈ 0.03[km/s]

Result:

€ 

v E ±σvE = x ± u = 29.85 ± 0.03( ) km/s[ ]
@home Use Excel and make your 
computer do all the work for you!

Note:  a single measurement has an uncertainty of s=sqrt(s2)  (not u!) 
each measurement  from the previous page e.g. vE= 29.8 +/- 0.1 [km/s]



The meaning of sigma

Example
We measure the lifetime of the neutron:

A certain theory predicts:

To what extend are these numbers in agreement?

τ ±στ = 950± 20 s[ ]

τ th = 910 s[ ]

2



The meaning of sigma

f = x −µ
σ68.3%

Recall: 

x = µ +σ ⇒ f =1e.g. if

95.5%

f

f
x = µ − 2σ ⇒ f = −2e.g. if2.25%

3

15.85%



P( f > r)
P( f > r)

f = x −µ
σ

The meaning of sigma

4

x

x



The meaning of sigma

Example
We measure the lifetime of the neutron:

A certain theory predicts:

To what extend are these numbers in agreement?

τ ±στ = 950± 20 s[ ]

τ th = 910 s[ ]

f = τ −τ th
στ

=
40
20

= 2

Interpretation: The corresponding probability is 1-0.955=0.046 i.e. 4.6%. 
If 1000 experiments of the same precision as ours are performed, if the theory is 
correct, and if there are no biases, then results from 46 experiments will differ 
from the theoretical value by at least as much as ours does. 5

τ −τ th = 2στ( )
“2 sigma difference”



Error propagation 
Example2: h (t) = gt2/2 
Evaluate g,  and its uncertainty sg,  assuming we measured h and t  (4 measurements total), 
and we know the precision of h and t to be sh =0.01m and st = 0.01s  respectively. 

Assume  h and t  are uncorrelated.  

h [m] t [s]

10.00 m +/- 0.01m 1.43 s +/- 0.01s
20.00 m +/- 0.01m 2.02 s +/- 0.01s
30.00 m +/- 0.01m 2.47 s +/- 0.01s
40.00 m +/- 0.01m 2.86 s +/- 0.01s

h=0m

h=40m

g +/- sg?



Error propagation 
Suppose we measured a set of e.g. n variables: x1,x2,…xn. with uncertainties sx1, sx2
…sxn and covariances cov(x1,x2), … cov(xn-1,xn).  Consider a function f=f(x1,x2,…xn).  
What is the variance of  f  i.e. (sf)2 (f is determined from x1,x2,…xn; we want to know 
what’s the uncertainty on f knowing uncertainties on x1,x2,…xn and their covariances)

7

σ f
2 =

∂f
∂x1

"

#
$

%

&
'

2

σ x1
2 +

∂f
∂x2

"

#
$

%

&
'

2

σ x2
2 +......+ ∂f

∂xn

"

#
$

%

&
'

2

σ xn
2 +

       + 2 ∂f
∂x1

"

#
$

%

&
'
∂f
∂x2

"

#
$

%

&
'cov(x1, x2 )+.......+ 2 ∂f

∂x1

"

#
$

%

&
'
∂f
∂xn

"

#
$

%

&
'cov(x1, xn )+.....+ 2 ∂f

∂xn−1

"

#
$

%

&
'
∂f
∂xn

"

#
$

%

&
'cov(xn−1, xn )

Special case: if x1,x2,…xn are uncorrelated (THIS CLASS):
cov(x1,x2)=0, … cov(xn-1,xn)=0, then the variance of f  is:

σ f
2 =

∂f
∂x1

"

#
$

%

&
'

2

σ x1
2 +

∂f
∂x2

"

#
$

%

&
'

2

σ x2
2 +......+ ∂f

∂xn

"

#
$

%

&
'

2

σ xn
2

The most general case, this formula works for 
all functions and small uncertainties. 



Error propagation 

Example1: f=f(x,y,z),  where x,y and z are uncorrelated.
The variance of f  is:

σ f
2 =

∂f
∂x
"

#
$

%

&
'
2

σ x
2 +

∂f
∂y
"

#
$

%

&
'

2

σ y
2 +

∂f
∂z
"

#
$

%

&
'
2

σ z
2

Note: if there are more then 3 variables which are measured, one should add more 
terms in  above equations.  If there are less than 3 variables (e.g. only x and y are 
measured, one should remove all terms with z variable in above equations). 



Combining Uncorrelated Errors: Special cases

Let f = f(x,	y) and variables x,	y are uncorrrelated

§ Linear case:

§ Products 

€ 

f = x ± y

σ f
2 = σx

2 +σy
2

€ 

f = xa yb

σ f

f
# 

$ 
% 

& 

' 
( 

2

= a2
σx

x
# 

$ 
% 

& 

' 
( 

2

+ b2
σy

y
# 

$ 
% 

& 

' 
( 

2

€ 

f = xy,   f = x/y

σ f

f
# 

$ 
% 

& 

' 
( 

2

=
σx

x
# 

$ 
% 

& 

' 
( 

2

+
σy

y
# 

$ 
% 

& 

' 
( 

2

absolute errors are relevant

Fractional errors are relevant and must be small !
(for larger errors, use a numerical method)

σ x,σ y − known, cov(x, y) = 0



Error propagation 
Example2: h (t) = gt2/2 
Evaluate g,  and its uncertainty sg,  assuming we measured h and t  (4 measurements total), 
and we know the precision of h and t to be sh =0.01m and st = 0.01s  respectively. 
Assume  h and t  are uncorrelated.  

𝑔 ℎ, 𝑡 = 2ℎ𝑡'(

𝜎* 2 = +*
+,

2 𝜎, 2 + +*
+-

2 𝜎- 2

𝜕𝑔
𝜕ℎ = 2𝑡'(

																																			+*
+-
= 2ℎ(−2)𝑡'3= - 4h 𝑡'3

𝜎* 2 = 2𝑡'( 2 𝜎, 2 + −4h 𝑡'3 2 𝜎- 2

𝜎* 2 = 4
-5

𝜎, 2 + 67,(

-8
𝜎- 2

Variance:

𝜎* = 
4
-5

 𝜎, 2  + 67,(

-8
𝜎- 2Standard deviation: 

(uncertainty)



Error propagation 
Example2: h (t) = gt2/2 
Evaluate g,  and its uncertainty sg,  assuming we measured h and t (4 measurements total), 
and we know the precision of h and t to be sh =0.01m and st = 0.01s  respectively. 

Assume  h and t  are uncorrelated.  

h [m] t [s] g+/- sg

10.00 m +/- 0.01m 1.43 s +/- 0.01s
20.00 m +/- 0.01m 2.02 s +/- 0.01s
30.00 m +/- 0.01m 2.47 s +/- 0.01s
40.00 m +/- 0.01m 2.86 s +/- 0.01s

h=0m

h=40m

Exercise @ home :
Fill this table out



Combining Results of Different Experiments

12



Combining Results of Different Experiments
When n experiments measure the same physical quantity 
and give a set of results ai with different uncertainties si2, then 
the best estimate of a and its accuracy s :

a =
ai σ i

2( )
i=1

n

∑

1 σ i
2( )

i=1

n

∑

Each experiment is to be weighted by a factor 1/si. In this approach 
we do not check the degree to which ai are mutually consistent.

σ 2 =
1

1 σ i
2( )

i=1

n

∑

Exercise:  calculate a when all experiments have the same 
accuracies  (si are the same)  

a =
ai σ i

2( )
i=1

n

∑

1 σ i
2( )

i=1

n

∑
σ i
2=const

" →""" a = 1
n

ai
i=1

n

∑ σ 2 =
1

1 σ i
2( )

i=1

n

∑
σ i
2=const

" →""" σ 2 =
σ i
2

n



Least squares fitting

§ Hypothesis testing
§ Parameter fitting

17



Least squares fitting
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• want a weighted fit
• don’t use plotting tool from 1st

year labs! (it doesn’t use 
uncertainties of individual 
datapoints    not a weighted fit!)→

ax + b



The Least Square Method
Suppose we measured n points at      and got results: 
We want to fit a function g to these data :                                 where                              

are  unknown parameters to be determined  and m<n.

€ 

xi fi ±σ i, fg(xi;a1,a2,....am )

€ 

a1,a2,....am
The method of least squares (also called as chi-square c2 minima-
lization) states that the best values of aj are those for which the sum:

S =
fi − g(xi;aj )

σ i, f

"

#
$
$

%

&
'
'i=1

n

∑
2

is a minimum.

€ 

c2

If fi is Gaussian distributed with 
mean g(xi,aj) and variance (sI,f)2

This method is general and does not require parent distributions.
To find aj   one must solve the system of equations

€ 

∂S
∂a j

= 0

Depending on the function g(x), equation may or may not yield on analy-
tic solution. In general, numerical methods must be used to minimize S.



Linear Fits. The straight line.

Let’s consider a function:  g(x)=ax+b, where the parameters 
parameters a and b are to be determined. The function S is: 

S =
fi − axi − b( )2

σ i, f
2∑

Taking partial derivatives: 
∂S
∂a

= −2
fi − axi − b( ) xi

σ i, f
2 = 0∑

∂S
∂b

= −2
fi − axi − b( )
σ i, f
2 = 0∑

B ≡ 1
σ i, f
2∑A ≡ xi

σ i, f
2∑

C ≡ fi
σ i, f
2∑ D ≡

xi
2

σ i, f
2∑

E ≡ xi fi
σ i, f
2∑ F ≡ fi

2

σ i, f
2∑



Where A through F are determined from the data:

Linear Fits. The straight line.

g(x)=ax+b

21

€ 

2 −E + aD+ bA( ) = 0

2 −C + aA + bB( ) = 0

€ 

a =
EB −CA
DB − A2

b =
DC − EA
DB − A2

B ≡ 1
σ i, f
2∑

A ≡ xi
σ i, f
2∑ C ≡ fi

σ i, f
2∑ D ≡

xi
2

σ i, f
2∑

E ≡ xi fi
σ i, f
2∑ F ≡ fi

2

σ i, f
2∑



Where A through F are determined from the data:

Linear Fits. The straight line.

g(x)=ax+b
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€ 

2 −E + aD+ bA( ) = 0

2 −C + aA + bB( ) = 0

€ 

a =
EB −CA
DB − A2

b =
DC − EA
DB − A2

B ≡ 1
σ i, f
2∑

A ≡ xi
σ i, f
2∑ C ≡ fi

σ i, f
2∑ D ≡

xi
2

σ i, f
2∑

E ≡ xi fi
σ i, f
2∑ F ≡ fi

2

σ i, f
2∑

σ a
2 =

B
DB− A2

σ b
2 =

D
DB− A2

Not derived here  
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Special case:

We already know the slope (e.g. from some theory)
Want to measure the offset b only.

g(x)=ax+b

∂S
∂b

= −2
fi − axi − b( )
σ i, f
2 = 0∑ S =

fi − axi − b( )2

σ i, f
2∑

b = 1
1
σ 2

i, f
∑

∑ ( fi − axi )
σ 2

i, f

σ b =
1
1
σ 2

i, f
∑



Example: Find the best straight line through the 
following measured points:

x 0 1 2 3 4 5
f 0.92 4.15 9.78 14.46 17.26 21.9

s 0.5 1.0 0.75 1.25 1.0 1.5

X

f
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Try to find the best fit 
line at home! 
Being able to do this is 
needed in many labs!
see also 
http://skipper.physics.sunysb.edu/~j
oanna/Lectures/PHY-251-
252/PHY251/PHY252-least-squares-
example.pdf



Rounding: 
§ 2 significant digits

§ 1 significant digit 

Result:

a = 4.23± 0.21

b = 0.9± 0.5
a = 4.2± 0.2

a=4.227  b=0.879
(sa)2=0.044  (sb)2=0.203  
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b = 0.88± 0.45

Always round the fit results (a and b) and their 
uncertainties to the same significant digit 
Can you reproduce those numbers using the derived formulas?




