Modern Physics

Why do we do experiments? Introduction to data analysis

Laszlo Mihaly, 2022 Spring
Textbook:
L. Lyons, "A Practical Guide to Data Analysis for Physical Science Students"

Partially based on slides by Prof. Joanna Kiryluk, Prof. Giacinto Piacquadio and graduate students Darin Mihalik \& Jonathan Pachter

1

Experiment, Outcome, Event, Probability

\square An experiment is a situation involving chance or probability that leads to results called outcomes.
\square The outcomes are the possible results of a repeated experiments.
\square An event is one possible outcome.
\square The probability is the measure of how
likely an event is.
The experiment is throwing a dice.
\square The outcomes are the top face showing 1 or 2 or .. Or 6 dots
\square An event is when you get 3 .
\square For a fair dice, the probability of getting a 3 is ???

In order to measure probabilities, mathematicians have devised the following formula for finding the probability of an event.

$$
0 \leq P(A) \leq 1
$$

- The probability of an event is the measure of the chance that the event will occur as a result of an experiment.

Discrete data/results

If data comes in discrete number \rightarrow Histogram

x in this histogram represents a range of experimental result between x and $\mathrm{x}+\Delta$, where Δ is the bin size. x increases in steps of Δ.
y is the number of events (experimental results falling in that range

3

Data continuous: Measure the height of 30 year old men
(a)

(a)each experiment represented by a bar \rightarrow difficult to visualize distribution

Binning: count how many events fall within a certain range. In (b) and (c) the bin size is 0.2 m , but (c) has much more events. The more the events (data), the finer it can be binned.

(e) In the limit of an infinite number of experiments, a continuous probability distribution $f(h)$ is obtained

Continuous probability distribution (pdf)

- Can be a good approximation already when the number of performed experiments is large!
- Let's see how such distribution typically looks like:

- The experimental measurements are typically spread around the true value Xtrue, that we'd like to measure.

5

Type of uncertainties: Random

Continuous distribution (infinite number of measurements)

- Statistical uncertainties: arise from the
 inherent statistical nature of the phenomena being observed, for example, nuclear decay experiments and/or limited instrumental precision, for example the fifth digit of the voltmeter fluctuates randomly.)
- A series of repeated measurements results in parameters "x" randomly distributed around the true value we want to measure "Xtrue"
- May be handled by the theory of statistics

Type of uncertainties: Systematic

- Comes from a possible bias of the experimental result from the true value we want to measure
- E.g. a series of repeated experiments results in measurements that are systematically shifted in the same direction by the same amount from the true value
- Can't be cured by accumulating more data
- Possible sources of this uncertainty are typically difficult to identify.

How to avoid/reduce them?
(1) Ensure apparatus is properly calibrated and zeroed
(2) No simple rule for eliminating systematic errors: good theory knowledge + common sense + experience!

Type of uncertainties: Mistakes

Similar to systematic uncertainties in nature
It somewhat differs from the systematic uncertainties since you don't expect it, and thus typically don't associate an error to it

Example 1:
Writing 2.34 kHz instead of 2.43 kHz in your lab book. If not immediately corrected, it will affect the correctness of the result.

Other examples:
Misreading scales, confusion of units, a physics effect you forgot to consider, etc.

A good experimentalist avoids such mistakes by careful cross-checks: e.g. understand step-by-step if results are in line with expectations, use multiple methods to verify them and their systematic errors, etc.

Mistakes can happen even to senior scientists
However, no result is accepted in the scientific community before further careful cross-checks (especially if it violates a cornerstone of physics as the Special Theory of Relativity) At the end, the original authors of the study found out their mistake (a loose cable!). Nevertheless, such mistakes can cost a lot in terms of career! Learn how to avoid them!

Most realistic situation:

 random and systematic uncertainties
x can have a meaning of any measured quantity (e.g. box weight, acceleration due to gravity, etc.)

Characteristics of a distribution

More on this later
Sloppy wording, but common: Uncertainty = error

How to present final experimental results \rightarrow proper rounding

Incorrect: (1.89999679 ± 0.00346) [m]

How to write it correctly?

1. Look at the uncertainty: 0.00346 and then round it to 2 most significant digits. If the 3 rd digit is ≥ 5 then the 2 nd significant number must be increased by 1 , i.e. $0.00346 \sim 0.0035$.
2. Round the measurement itself such that the number of decimal digits is the same as for the (rounded) uncertainty

Correct: $\quad(1.9000 \pm 0.0035)[\mathrm{m}]$
1.9000(35) [m]
$(19000 \pm 35) \times 10^{-4}[\mathrm{~m}]$
$19000(35) \times 10^{-4}[\mathrm{~m}]$

If the uncertainty is 0.0035, then it does not make sense to keep as many numbers in the
 1.8999679 as possible. Numbers in purple are not significant.

How to present final experimental results \rightarrow proper rounding

Important:

In Lab Reports some points will be subtracted if rounding is not done properly!

Exercises:

A. $(1.9+/-0.189)[m]$
B. $(1.89999679)+l-0.189[\mathrm{~m}] \quad$ Which are correct and which
C. $(1.90+/-0.19)[\mathrm{m}]$
D. $(1.9+/-0.2)[\mathrm{m}]$ are incorrect?
E. $(23.24555+/-2.234)[\mathrm{m}]$
F. $(23.2+/-2.2)[\mathrm{m}]$
G. $(23+/-2)[\mathrm{m}]$
H. $(0.00012378+/-0.00000568)[\mathrm{m}]$
I. $(0.0001238+/-0.0000057)[\mathrm{m}]$
J. $(0.000124+/-0.000006)[\mathrm{m}]$
K. $(1.24+/-0.06) \times 10^{-4}[\mathrm{~m}]$
L. $1.24(6) \times 10^{-4}[\mathrm{~m}]$

Probability interpretations

- "It is possible for an exp. physicist to spend a lifetime analyzing data without realizing that there are two different fundamental approaches to statistics" L. Lyons

1. Relative frequency (frequentism)
A and B are outcomes of a repeatable experiment

$P(A)=\lim _{N \rightarrow \infty} \frac{\text { times outcome is } A}{N} \quad$| Most common in Experimental |
| :---: |
| Physics (this course!) |

e.g. particle scattering, radioactive decay
2. Subjective probability (bayesian)
A, B are hypothesis (statements that are true or false)
$P(A)=$ degree of belief that A is true
answers more directly the question we are interested in, but additional dependence on "prior belief" (e.g. 30\% chance of rain tomorrow)

Probability distribution functions, expectation values and moments

Multiple measurements: distribution

Continuous line is a known function, so called Probability Density Function (PDF)

For $N \rightarrow \infty$ the histogram approaches the PDF
Many PDFs exist, but a large number of problem in physics are described by a small number of theoretical distributions

Binomial, Poisson, Gaussian PDFs - most common in experimental
physics. See Appendix 3 and 4 of the textbook (L. Lyons)

Poisson distribution

Typical for counting experiments, for example nuclear decay rate measurement. For example, we record the number of clicks of a GM counter for 60 seconds and repeat that measurement many times. The probability distribution will be

$$
P(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

Here λ is the expected number of counts, and k is the actual measured number. The average of the measured k values, $\bar{k}=\frac{\sum k_{i}}{N}$ is our best guess for the value of λ. The variance is $\mathrm{s}^{2}=\bar{k}^{2}$. Accordingly, the result of a measurement should be reported as

$$
\bar{k} \pm \sqrt{\bar{k}}
$$

Measuring for longer time means larger \bar{k}. For $\bar{k} \rightarrow \infty$ the distribution approaches a Gaussian centered around λ and the variance is $\sigma=\sqrt{\lambda}$.

For the rest of the discussion we will focus on the Gaussian PDF.

The Gaussian Distribution

The Gaussian (also called "normal") PDF also plays a central role in all of statistics, and thus in science. Even in cases where its application is not strictly correct, the Gaussian often provides a good approximation to the true PDF. It is defined as:

$$
P(x)=y=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Described by two parameters: μ, σ
For large $N, \bar{x} \rightarrow \mu$ and $s \rightarrow \sigma$
Expectation value (mean): $\mathrm{E}[x]=\mu$
Variance: $\mathrm{V}[x]=\sigma^{2}$
Standard deviation ("error"): σ
Relative error: σ / μ

Why is Gaussian so important?

Central limit theorem: Consider any pdf. Repeat measurements n times. Take average. For $n \rightarrow$ infty the average will follow Gaussian distribution.

Example: throwing a single dice, then $x=\{1, \ldots, 6\}$ and $P(x)=1 / 6$ The pdf is uniform.
Throw n dice and calculate the average score. Repeat that N times and make the histogram. In the limit of n, N goes to infinity the average will follow a Gaussian distribution.

Works for any pdf. For example, a voltmeter reading randomly with this distribution:

Average of 5 measurements:

Characteristics of Probability Functions

The area under the Gaussian curve between integral intervals of σ is an important practical quantity

Expectation Values, Distribution Moments

These can be defined mathematically without specifying $\mathrm{P}(\mathrm{x})$
Expectation value of $\mathrm{x}: \quad E[x]=\bar{x}=\int x P(x) d x$
More general: The r-th moment of x around x_{0} is:

$$
E\left[\left(x-x_{0}\right)\right]=\int\left(x-x_{0}\right)^{r} P(x) d x
$$

1st moment, if $x_{0}=0$

$$
\text { Mean }=\int x P(x) d x
$$

2nd moment

$$
\text { Variance }=\int x^{2} P(x) d x
$$

$$
\text { Standard deviation }=\sqrt{\text { Variance }}
$$

Expectation Values, Distribution Moments

For a Gaussian distribution

$$
P(x)=y=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Characteristics of the distribution

- Sample mean x
\rightarrow provides an estimate of the true value μ
- Sample variance \mathbf{s}^{2}
\rightarrow estimate of the variance σ^{2}

Notice:
s = uncertainty on a single measurement $u=u n c e r t a i n t y$ on the mean

One entry (x) in this histogram means one measurement

Example

- In an experiment consisting of 10 independent measurements, we measured the speed of Earth v_{E} in its revolution around the Sun and got the following results:

1. $\mathrm{v}_{\mathrm{E}}=29.7[\mathrm{~km} / \mathrm{s}]$
2. $\mathrm{v}_{\mathrm{E}}=29.9[\mathrm{~km} / \mathrm{s}]$
3. $\mathrm{v}_{\mathrm{E}}=29.9[\mathrm{~km} / \mathrm{s}]$
4. $\mathrm{v}_{\mathrm{E}}=29.9[\mathrm{~km} / \mathrm{s}]$
5. $\mathrm{v}_{\mathrm{E}}=29.8[\mathrm{~km} / \mathrm{s}]$
6. $\mathrm{v}_{\mathrm{E}}=30.0[\mathrm{~km} / \mathrm{s}]$
7. $\mathrm{v}_{\mathrm{E}}=29.7[\mathrm{~km} / \mathrm{s}]$
8. $\mathrm{v}_{\mathrm{E}}=29.9[\mathrm{~km} / \mathrm{s}]$
9. $\mathrm{v}_{\mathrm{E}}=29.8[\mathrm{~km} / \mathrm{s}]$
10. $\mathrm{v}_{\mathrm{E}}=30.0[\mathrm{~km} / \mathrm{s}]$

Questions:
What is the best estimate (and its uncertainty) for V_{E} ?
What is a single measurement uncertainty on V_{E} ?

$$
\begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}= \\
& =\frac{1}{10}(29.7+29.9+29.9+29.9+29.8+30.0+29.7+29.9+29.8+30.0)[\mathrm{km} / \mathrm{s}] \\
& =29.853394[\mathrm{~km} / \mathrm{s}] \\
s^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{u}-\bar{x}\right)^{2} \\
& =\frac{1}{9}\left[(29.7-\bar{x})^{2}+(29.9-\bar{x})^{2}+(29.9-\bar{x})^{2}+(29.9-\bar{x})^{2}+(29.8-\bar{x})^{2}\right. \\
& \left.+(30.0-\bar{x})^{2}+(29.7-\bar{x})^{2}+(29.9-\bar{x})^{2}+(29.8-\bar{x})^{2}+(30.0-\bar{x})^{2}\right]\left[\mathrm{km}^{2} / \mathrm{s}^{2}\right] \\
& =0.009456\left[\mathrm{~km}^{2} / \mathrm{s}^{2}\right] \\
u^{2} & =\frac{s^{2}}{n}=\frac{0.009456}{10}\left[\mathrm{~km}^{2} / \mathrm{s}^{2}\right]=0.0009456\left[\mathrm{~km}^{2} / \mathrm{s}^{2}\right] \\
u & =0.030751[\mathrm{~km} / \mathrm{s}] \approx 0.03[\mathrm{~km} / \mathrm{s}]
\end{aligned}
$$

Result:

$$
\bar{v}_{E} \pm \sigma_{v_{E}}=\bar{x} \pm u=(29.85 \pm 0.03)[\mathrm{km} / \mathrm{s}]
$$

Notice: a single measurement has an uncertainty $s=\sqrt{ } s^{2}$ (not u!), i.e. each measurement of the previous page e.g. $v=29.7 \pm 0.1$

25

More than one variable - error propagation

Want to evaluate a quantity c, that depends on two variables, a and b in a very simple way: $a=b-c$. Assume a and b follow Gaussian PDF with σ_{b} and σ_{c}. What is the standard deviation (error) of a ?

Two situations: The errors in a and b are correlated or uncorrelated. Plot the deviation from the average value for each measurement:

The calculation of the error of a is very different in the two cases.

More than one variable - error propagation

Correlated errors

When b is off, c is also off in the same direction. Systematic error.
$\sigma_{a}=\sigma_{b}+\sigma_{c}$
Uncorrelated errors

When b is off c may be off in the same direction, or in the opposite direction. Truly random error.
$\sigma_{a}{ }^{2}=\sigma_{b}{ }^{2}+\sigma_{c}{ }^{2}$

See book for proof.

27

Adding uncorrelated errors - general case

We calculate f that depends on measured parameters $x_{1}, x_{2} \ldots$. For any given measurement the deviation from the mean is $\delta x_{1}, \delta x_{2}, \ldots$

If all δx is zero except for δx_{i}, the deviation from the mean value of f is $\delta f=\frac{\partial f}{\partial x_{i}} \delta x_{i}$. The typical value of δx_{i} is σ_{i}, so the contribution to the error of f is $\sigma_{f}=\frac{\partial f}{\partial x_{i}} \sigma_{i}$

In the spirit of previous discussions, if the errors are uncorrelated, we obtain the error of f by

$$
\sigma_{f}^{2}=\Sigma\left(\frac{\partial f}{\partial x_{i}}\right)^{2} \sigma_{i}^{2}
$$

Works for any function, small errors only.

Combining different experiments

We do several measurements to determine the same quantity a. Each measurement has its own error and they may be different from each other. What is the best way to calculate the average? What is the error of the average?

$$
\bar{a}=\frac{\sum a_{i} / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}} \quad \frac{1}{\sigma^{2}}=\sum \frac{1}{\sigma_{i}^{2}}
$$

Special case: all $\sigma_{i}=\sigma_{0}$ are equal, there are N measurements.

$$
\sigma=\sigma_{0} / \sqrt{N}
$$

Measured Proton mass

Least squares (χ^{2}) fit

Quantity y depends on x. For example, $y=a x+b$. We set the value of x to x_{i} (with no error) and measure the value $y_{\mathrm{i}}{ }^{\text {obs }}$ and uncertainty σ_{i}, and repeat this several times. How can we determine the parameters a and b ? What is their error?

First, for each x_{i}, calculate from the formula the corresponding $y_{i}^{\text {th }}$.
Calculate $\chi^{2}=S=\sum\left(\frac{y_{i}^{t h}(a, b)-y_{i}^{\text {obs }}}{\sigma_{i}}\right)^{2}$
Change the parameters a an b until this quantity reaches a minimum value.
Works for any function! Works for any number of parameters. We need (much) more measurements than the number of parameters we want to determine.

Least squares $\left(\chi^{2}\right)$ fit

Useful to:

- Fit (determine) parameters of a function
- Determine the parameters (+ uncertainties) of a function that fits the data
- Example: I measure the distance a car has moved at various different times, and I want to determine its velocity $\mathrm{v}=$ distance / time (the function assumes the car is traveling at constant speed)
- Hypothesis testing
- Determine how compatible the data is with being described by a certain function
- Example (following from above): I want to understand how compatible my data is with the hypothesis I made that the motion is happening at constant speed.
$\chi^{2 \gg 1}$ means that there is systematic deviation from the data. For example you do a linear fit, but the actual dependence is quadratic.

Fitting straight lines is special (simple)

We do not need to go through a time-consuming minimization process.
There is an algebraic solution. Take

$$
y=A+B x
$$

Tocalculate the intercept A of the best fitline

$$
A=\frac{1}{\Delta}\left(\sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}}-\sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}}\right)
$$

where

$$
\Delta=\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\left(\sum \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2}
$$

and $\quad B=\frac{1}{\Delta}\left(\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}}-\sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}}\right)$
The uncertainties are

$$
\begin{aligned}
& \sigma_{A}^{2}=\frac{1}{\Delta} \sum\left(\frac{x_{i}^{2}}{\sigma_{i}^{2}}\right) \quad \sigma_{B}^{2}=\frac{1}{\Delta} \sum\left(\frac{1}{\sigma_{i}^{2}}\right), \\
& \text { Implemented here }
\end{aligned}
$$

https://www.ic.sunysb.edu/class/phy141md/doku.php?id=phy131studio:labs:plottingtool

An example (II)

- First plot the data on a two-dimensional x y graph $(y=f(x))$:

33

An example (III)

- Now fit a straight line to the data $(y=a x+b)$, determine a and b :

An example (IV)

- Now fit a straight line to the data $(y=a x+b)$, determine a and $b:$

35

An example (V)

- Now fit a straight line to the data $(\mathrm{y}=\mathrm{ax}+\mathrm{b})$, determine a and b :

Another Example: Measure " g "

In this experiment we want to measure the acceleration due to gravity (or our hypothesis for the law governing the change of velocity per time)

$$
h(t)=\frac{1}{2} g t^{2}
$$

We therefore need to know the time it takes an object to travel a known distance under the influence of gravity.

Our experiment will consist of dropping an object from a specific height and recording the time from release until it hits the ground

37

Setup of the Experiment

- You will drop a massive object in a 10 meter long vacuum tube (neglect air resistance)
- You precisely know the position of the markers (no uncertainty in the position)
- You will measure the time from release to when the object passes each successive meter mark
- You measure time with a stopwatch and therefore, this measurement has uncertainty

Each time measurement has the same uncertainty

$$
\sigma_{t}=0.05 \mathrm{~s}
$$

Recorded Data

Distance $[\mathrm{m}]$	Time $[\mathrm{s}]$
0	0.0
1	0.43
2	0.6
3	0.73
4	0.91
5	1.05
6	1.1
7	1.15
8	1.26
9	1.26
10	1.47

distance is a quadratic function of time!
$h(t)=\frac{1}{2} g t^{2}$

This is a 1 parameter estimation problem We have to calculate an estimate of g from our experimental data

Remember:

To get

$$
t(h)=\sqrt{\frac{2 h}{g}}
$$

41

Need column for uncertainty.

Two methods:
-Create whole column of identical values
-Refer to fixed box, with the one value 0.05

We'll do the former, for now

C2		- $\quad f_{x}$		0.05	
4	A	B	C	D	E
1	distance (m)	time (s)			
2	1	0.43	0.05		
3	2	0.6			
4	3	0.73			
5	4	0.91			
6	5	1.05			
7	6	1.1			
8	7	1.15			
9	8	1.26			
10	9	1.26			
11	10	1.47			
12				0.05	
13					
14					
15					
16					

you know how to do a "straight line fit". Good!

But time is a non-linear function of distance.
$t(h)=\sqrt{\frac{2 h}{g}}$
Make the problem linear using logarithms and algebra!

$$
\begin{aligned}
& \ln (a b)=\ln (a)+\ln (b) \\
& \ln \left(a^{b}\right)=b \ln (a)
\end{aligned}
$$

$$
\ln t=\frac{1}{2} \ln h+\frac{1}{2} \ln \frac{2}{g}
$$

Why can this be

 viewed as linear?

$$
\begin{aligned}
& x=\ln (h) \\
& y=\ln (t)
\end{aligned}
$$

$$
\begin{gathered}
a=\frac{1}{2} \\
b=\frac{1}{2} \ln \frac{2}{g} \\
g=2 \exp (-2 b)
\end{gathered}
$$

We can find g from the offset b of the straight line

45
$\ln t=\frac{1}{2} \ln h+\frac{1}{2} \ln \frac{2}{g}$
compare to $y=a x+b$

Now compute:
$x=\ln (s)$
$y=\ln (t)$
$\mathrm{o}_{s}=0 \rightarrow \sigma_{x}=0$

F2		- $-\quad \boldsymbol{f}_{\boldsymbol{x}}$		$=\mathrm{LN}(\$ \mathrm{~B} 2)$			
4	A	B	C	D	E	F	
1	distance (m)	time (s)			log(distance/m)	$\log ($ time/s)	
2	1	0.43	0.05		-	-0.84397	
3	2	0.6	0.05		0.693147181	-0.51083	
4	3	0.73	0.05		1.098612289	-0.31471	
5	4	0.91	0.05		1.386294361	-0.09431	
6	5	1.05	0.05		1.609437912	0.04879	
7	6	1.1	0.05		1.791759469	0.09531	
8	7	1.15	0.05		1.945910149	0.139762	
9	8	1.26	0.05		2.079441542	0.231112	
10	9	1.26	0.05		2.197224577	0.231112	
11	10	1.47	0.05		2.302585093	0.385262	
12							+
13							

47

Recall:

$$
\ln t=\frac{1}{2} \ln h+\frac{1}{2} \ln \frac{2}{g}
$$

Now we're just doing linear analysis on y, x, with a, and b

$$
y=a x+b
$$

But a is fixed to be $1 / 2$!

This is the case when we only fit one parameter b:

$$
b=\frac{1}{\sum \frac{1}{\sigma_{y_{i}}^{2}}} \sum \frac{\left(y_{i}-a x_{i}\right)}{\sigma_{y_{i}}^{2}} \quad \sigma_{b}=\sqrt{\frac{1}{\sum \frac{1}{\sigma_{y_{i}}^{2}}}}
$$

49

51

Q: Is this value consistent with $9.81 \mathrm{~m} / \mathrm{s}^{2}$
Calculate uncertainty on g easy! (error propagation)

$$
\begin{aligned}
& \sigma_{g}=\left|\frac{\partial a}{\partial b}\right|_{b} \\
& \sigma_{g}=4 \exp (-2 b) \sigma_{b}
\end{aligned}
$$

