

average of the measured *k* values, $\bar{k} = \frac{\sum k_i}{N}$ is our best guess for the value of λ . The variance is $s^2 = \bar{k}^2$. Accordingly, the result of a measurement should be reported as $\bar{k} + \sqrt{\bar{k}}$

Measuring for longer time means larger \overline{k} . For $\overline{k} \to \infty$ the distribution approaches a Gaussian centered around λ and the variance is $\sigma = \sqrt{\lambda}$.

For the rest of the discussion we will focus on the Gaussian PDF.

17

The Gaussian Distribution The Gaussian (also called "normal") PDF also plays a central role in all of statistics, and thus in science. Even in cases where its application is not strictly correct, the Gaussian often provides a good approximation to the true PDF. It is defined as: $P(x) = y = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\sigma^2 = 0.2$ P(x)Described by two parameters: μ , σ For large $N, \bar{x} \rightarrow \mu$ and $s \rightarrow \sigma$ Expectation value (mean): $E[x] = \mu$ $r^2 = 0.5$ Variance: $V[x] = \sigma^2$ Standard deviation ("error"): σ Relative error: σ/μ μ x

	Example
	 In an experiment consisting of 10 independent measurements, we measured the speed of Earth v_E in its revolution around the Sun and got the following results:
The text is moving at a million miles per hour in million to the distant stars of the universe. You never noticed?	1. v_E = 29.7 [km/s] 2. v_E = 29.9 [km/s] 3. v_E = 29.9 [km/s] 4. v_E = 29.9 [km/s] 5. v_E = 29.8 [km/s] 6. v_E = 30.0 [km/s] 7. v_E = 29.7 [km/s] 8. v_F = 29.9 [km/s]
	9. v_E = 29.8 [km/s] 10. v_E = 30.0 [km/s]
	nate (and its uncertainty) for v_E ? urement uncertainty on v_E ?

$$\begin{split} \overline{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i = \\ &= \frac{1}{10} \left(29.7 + 29.9 + 29.9 + 29.9 + 29.8 + 30.0 + 29.7 + 29.9 + 29.8 + 30.0 \right) \left[\text{km/s} \right] \\ &= 29.853394 \left[\text{km/s} \right] \\ s^2 &= \frac{1}{n-1} \sum_{i=1}^{n} \left(x_u - \overline{x} \right)^2 \\ &= \frac{1}{9} \left[(29.7 - \overline{x})^2 + (29.9 - \overline{x})^2 + (29.9 - \overline{x})^2 + (29.8 - \overline{x})^2 + (30.0 - \overline{x})^2 \right] \left[\text{km}^2/\text{s}^2 \right] \\ &= 0.009456 \left[\text{km}^2/\text{s}^2 \right] \\ u^2 &= \frac{s^2}{n} = \frac{0.009456}{10} \left[\text{km}^2/\text{s}^2 \right] = 0.0009456 \left[\text{km}^2/\text{s}^2 \right] \\ u &= 0.030751 \left[\text{km/s} \right] \approx 0.03 \left[\text{km/s} \right] \\ \hline \overline{v}_E \pm \sigma_{v_E} = \overline{x} \pm u = \left(29.85 \pm 0.03 \right) \left[\text{km/s} \right] \\ \hline \text{Notice:} \text{ a single measurement has an uncertainty s=} \sqrt{s^2 (\text{not ul)}, i.e.} \\ &= ach measurement of the previous page e.g. v = 29.7 \pm 0.1 \end{split}$$

<text><text><equation-block><equation-block><equation-block><equation-block>

Adding uncorrelated errors - general case

We calculate *f* that depends on measured parameters $x_1, x_2 \dots$ For any given measurement the deviation from the mean is δx_1 , δx_2 ,

If all δx is zero except for δx_i , the deviation from the mean value of f is $\delta f = \frac{\partial f}{\partial x_i} \delta x_i$. The typical value of δx_i is σ_i , so the contribution to the error of f is $\sigma_f = \frac{\partial f}{\partial x_i} \sigma_i$

In the spirit of previous discussions, if the errors are uncorrelated, we obtain the error of f by

$$\sigma_f^2 = \sum \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$$

Works for any function, small errors only.

Least squares (χ^2) fit Quantity y depends on x. For example, y = ax + b. We set the value of x to x_i (with no error) and measure the value y_i^{obs} and uncertainty σ_i , and repeat this several times. How can we determine the parameters a and b? What is their error? First, for each x_i , calculate from the formula the corresponding y_i^{th} . Calculate $\chi^2 = S = \sum_{i=1}^{i} \left(\frac{y_i^{th}(a,b) - y_i^{obs}}{\sigma_i}\right)^2$ Change the parameters a an b until this quantity reaches a minimum value. Works for any function! Works for any number of parameters. We need (nuch) more measurements than the number of parameters we want to determine.

Another Example: Measure "g"

In this experiment we want to measure the acceleration due to gravity (or our hypothesis for the law governing the change of velocity per time)

$$h(t) = \frac{1}{2}gt^2$$

We therefore need to know the time it takes an object to travel a known distance under the influence of gravity.

Our experiment will consist of dropping an object from a specific height and recording the time from release until it hits the ground

Recorded Data			
Distance [m]	Time [s]		
0	0.0		
1	0.43		
2	0.6		
3	0.73		
4	0.91		
5	1.05		
6	1.1		
7	1.15		
8	1.26		
9	1.26		
10	1.47		

$$\ln t = \frac{1}{2} \ln h + \frac{1}{2} \ln \frac{2}{g}$$
compare to
$$y = ax + b$$
Now compute:
$$x = \ln(s)$$

$$y = \ln(t)$$

$$y = n + (t)$$

$$x = 0 \rightarrow \sigma_x = 0$$

$$y = h + f(t) = 0$$

$$y = h + f(t)$$

√ fx	=1/SUM(D2	Alignment D11)*SUM(F	Number 2:F11)			Styles		Cells	Edit
	D	E	F	G	Н	I.	J	K	Ľ
y;	1/sigma_y^2	(y-ax)	(y - ax)/sigma_y^2	14.32					
7907	73.96	-0.84397007	-62.4200264	-		Fit One P	Parameter:		
3333	144	-0.85739921	-123.4654868			a =	0.5		
9315	213.16	-0.86401689	-184.1738401						
4505	331.24	-0.78745786	-260.8375416			b =	=1/SUM(D2	:D11)*SU	M(F2:F11)
1905	441	-0.75592879	-333.3645973						
5455	484	-0.80056955	-387.4756645						
7826	529	-0.83319313	-440.7591669				·Y		
8254	635.04	-0.80860905	-513.499091			1	-(v)	$-ax_i$	1
8254	635.04	-0.86750057	-550.8975605		h	and a second	$\nabla (y_i)$	$-\alpha r_i$)
1361	864.36	-0.76603015	-662.1258167		$v - \frac{1}{2}$	1		_2	

	Tar .	Alignment	T# Number	10		Styles		Cells	Edit
√ f _x	=SQRT(1/S	UM(D2:D11))							
	D	E	F	G	Н	1	J	К	L
y 1	/sigma_y^2	(y-ax)	(y - ax)/sigma_y^2						
27907	73.96	-0.84397007	-62.4200264			Fit One Par	ameter:		
33333	144	-0.85739921	-123.4654868			a =	0.5	5	
49315	213.16	-0.86401689	-184.1738401						
94505	331.24	-0.78745786	-260.8375 <mark>4</mark> 16			b =	-0.80882		
61905	441	-0.75592879	-333.3645973			sigma_b =	=SQRT(1/	SUM(D2:D	11))
45455	484	-0.80056955	-387.4756645						
47826	529	-0.83319313	-440.7591669						
68254	635.0 <mark>4</mark>	-0.80860905	-513.499091						
68254	635.04	-0.86750057	-550.8975605					+	
01361	864.36	-0.76603015	-662.1258167			1	1		
(LEA)					a		-	L	
					U	b -	1		
							L^{-1}		
						1	7.—	2	
						V	ω_{σ}	-	
						ľ ľ		<i>Y</i> _i	
						500 - 00			

